拟阵是组合数学中的一个结构,是对向量空间中线性独立这一概念的概括与归纳。拟阵有许多等价的定义,其中最主要的几个定义分别是基于独立集、基底、环路、闭集、平坦、闭包算子和秩函数。
拟阵理论从线性代数和图论中借用了大量术语,主要是因为它是对这些领域中很多重要的核心概念的概括。拟阵理论在几何、拓扑学、组合优化、网络理论和编码理论中都有应用。
拟阵有很多等价的定义方式。
就独立集来说, 一个有限的拟阵 是一个二元组 , 其中 是一个 有限集 (称之为 基础集) , 是一个由的子集构成的 集族 (称之为 独立集) 它需要满足下面的条件:
头两个特性定义了一个公认的组合结构,叫做独立系统。
对于有限拟阵 ,其基础集的子集称为一个基底(英文:basis),如果它是一个极大的独立集(即添加任何一个新的元素得到的子集都不是独立集)。拟阵的一种等价定义为二元组,其中 是一个有限集, 是一个由基底构成的的子集族,称为的基,满足以下条件:
可以证明,一个有限拟阵的所有基底的元素个数都相同,这个数被称为拟阵的秩。
对于有限拟阵 ,其基础集的子集称为一个环路(英文:circuit),如果它是一个极小的非独立集(即去掉其中任一元素得到的子集都是独立集)。拟阵的一种等价定义为二元组,其中 是一个有限集, 是一个由环路构成的的子集族,称为的环路集,满足以下条件:
可以证明,基础集的一个子集是独立集当且仅当它不包含任一环路作为子集。
类似线性代数基底的性质,拟阵的基底具有类似的性质:的任意两个基底具有相同的元素个数。这个数字被称为拟阵的秩。