电位

✍ dations ◷ 2024-07-03 08:41:50 #电位
在静电学里,电势,或作电位(英语:electric potential),是标量,定义为处于电场中某个位置的单位电荷所具有的电势能。其数值不具有绝对意义,只具有相对意义,因此为了便于分析问题,必须设定一个参考位置,并把它设为零,称为零势能点。通常,会把无穷远处的电势设定为零。那么,电势可以定义如下:假设检验电荷从无穷远位置,经过任意路径,克服电场力,缓慢地移动到某位置,则在这位置的电势,等于因迁移所做的机械功与检验电荷量的比值。在国际单位制里,电势的度量单位是伏特(Volt),是为了纪念意大利物理学家亚历山德罗·伏打(Alessandro Volta)而命名。电势必需满足泊松方程,同时符合相关边界条件;假设在某区域内的电荷密度为零,则泊松方程约化为拉普拉斯方程,电势必需满足拉普拉斯方程。在电动力学里,当含时电磁场存在的时候,电势可以延伸为“广义电势”。特别注意,广义电势不能被视为电势能每单位电荷。处于外电场的带电粒子会受到外电场施加的作用力,称为电场力,促使带电粒子加速运动。对于带正电粒子,电场力与电场同方向;对于带负电粒子,电场力与电场反方向。电场力的数值大小与电荷量、电场数值大小成正比。作用力与势能之间有非常直接的关系。随着物体朝著作用力的方向的加速运动,物体的动能变大,势能变小。例如,一个石头在山顶的重力势能大于在山脚的重力势能。随着物体的滚落,重力势能变小,动能变大。对于某种特别作用力,科学家可以定义其矢量场和其位势,使得物体因为这矢量场而具有的势能,只与物体位置、参考位置之间的距离有关。称这种作用力为保守力,这种矢量场为保守场。例如,重力、静电场的电场力,都是保守力。静电场的标势称为电势,或称为静电势。电势和磁矢势共同形成一个四维矢量,称为四维势。从某一个惯性参考系观察到的四维势,应用洛伦兹变换,可以计算出另外一个惯性参考系所观察到的四维势。在静电学里,电场 E {displaystyle mathbf {E} } 内某位置 r {displaystyle mathbf {r} } 的电势 ϕ {displaystyle phi } ,以方程定义为其中, U E {displaystyle U_{mathrm {E} }} 是在位置 r {displaystyle mathbf {r} } 的检验电荷 q {displaystyle q} 所具有的电势能。电势能的数值是人为设定的,没有绝对意义,只有相对于某参考位置的已设定参考值时才有物理意义。假若要设定电势能在空间任意位置的数值,必须先设定其在某参考位置 r 0 {displaystyle mathbf {r} _{0}} 的数值。为了方便运算,假设其参考数值为0。然后,就可以将在位置 r {displaystyle mathbf {r} } 的电势能 U E ( r ) {displaystyle U_{mathrm {E} }(mathbf {r} )} 定义为从参考位置 r 0 {displaystyle mathbf {r} _{0}} 缓慢地将检验电荷 q {displaystyle q} 移动至 r {displaystyle mathbf {r} } 所需做的机械功 W {displaystyle W} :移动检验电荷时所施加的外力 F {displaystyle mathbf {F} } ,必须恰巧抵消处于电场 E {displaystyle mathbf {E} } 的检验电荷 q {displaystyle q} 所感受到的电场力 q E {displaystyle qmathbf {E} } ,即 F = − q E {displaystyle mathbf {F} =-qmathbf {E} } 。其所做机械功等于外力 F {displaystyle mathbf {F} } 的路径积分:其中, L {displaystyle mathbb {L} } 是从参考位置 r 0 {displaystyle mathbf {r} _{0}} 到位置 r {displaystyle mathbf {r} } 的一条任意路径, d ℓ {displaystyle mathrm {d} {boldsymbol {ell }}} 是微小线元素。在静电学里, ∇ × E = 0 {displaystyle mathbf {nabla } times mathbf {E} =0} ,电场是保守场,所以,在积分时,可以选择任意路径 L {displaystyle mathbb {L} } ,计算出来的结果都一样。欲知更详尽细节,请参阅条目保守力。由于这方程右边的路径积分跟路径 L {displaystyle mathbb {L} } 无关,只跟路径的初始位置 r 0 {displaystyle mathbf {r} _{0}} 、终止位置 r {displaystyle mathbf {r} } 有关,因此若能够假设无穷远位置 ∞ {displaystyle infty } 的电势能为0,则可以设定参考位置 r 0 {displaystyle mathbf {r} _{0}} 在无穷远位置 ∞ {displaystyle infty } :所以,电势就是从无穷远位置到检验位置对于电场做路径积分所得结果的负值:在任意两个位置 r 1 {displaystyle mathbf {r} _{1}} 、 r 2 {displaystyle mathbf {r} _{2}} 之间的“电势差” Δ ϕ {displaystyle Delta phi } 为由于电场 E {displaystyle mathbf {E} } 是保守场,电势差也与积分路径无关,只跟积分路径的初始位置与终止位置有关。由点电荷 Q 所产生的电势,在距离 r 时,可表示为其中,ε0 是真空电容率。在无限远处,电势为零。由多个点电荷产生的电势,相等于各点电荷所产生的电势之和。此外,电势场是标量场,电场则是矢量场。电场遵守叠加原理:假设在三维空间里,由两组完全不相交的电荷分布所产生的电场分别为 E 1 {displaystyle mathbf {E} _{1}} 、 E 2 {displaystyle mathbf {E} _{2}} ,则总电场为 E t = E 1 + E 2 {displaystyle mathbf {E} _{t}=mathbf {E} _{1}+mathbf {E} _{2}} 。总电势为每单位电荷克服电场力所做的机械功之和:所以,电势也遵守叠加原理。当计算一组电荷分布所产生的电势时,只需要知道在电荷分布的每个源位置的单独电荷所产生在检验位置的电势,就可以应用积分运算,得到整个电荷分布所产生在检验位置的电势。应用积分符号内取微分方法,电势的梯度为所以,电场与电势之间的关系为根据高斯定律的方程,其中, ρ {displaystyle rho } 是电荷密度, ϵ 0 {displaystyle epsilon _{0}} 是电常数。所以,电势满足泊松方程:假设电荷密度为零,则这方程变为拉普拉斯方程:请注意,假若 ∇ × E ≠ 0 {displaystyle mathbf {nabla } times mathbf {E} neq 0} ,也就是说,电场不具保守性(由于随时间变化的磁场造成的效应;参阅麦克斯韦方程组),则不能使用这些方程。由于电势乃是标量,而电场是具有三个分量的矢量,所以,很多时候,使用电势来解析问题会省去很多运算工作,带来很大的便利。在某空间区域内,假设电荷密度为零,则电势必须满足拉普拉斯方程,并且符合所有相关边界条件。在静电学里,有三种边界条件:根据拉普拉斯方程的唯一性定理,对于这些种类的边界条件,拉普拉斯方程的解答都具有唯一性。所以,只要找到一个符合边界条件的解答,则这解答必定为正确解答。应用分离变数法来解析拉普拉斯方程,可以将问题的偏微分方程改变为一组较容易解析的常微分方程。对于一般问题,通常会采用直角坐标系、圆柱坐标系或球坐标系来分离拉普拉斯方程。但是,对于其它比较特别的问题,另外还有八种坐标系可以用来分离拉普拉斯方程。分离之后,找到每一个常微分方程的通解(通常为一组本征方程的叠加),电势可以表达为这些通解的乘积。将这表达式与边界条件相匹配,就可以设定一般解的系数,从而找到问题的特解。根据拉普拉斯方程的唯一性定理,这特解也是唯一的正确解答。假设在xy-平面的无限平面导体被一条位于 y = 0 {displaystyle y=0} 的绝缘线条分为两半,两个处于y+、y--半平面的导体的电势分别设定为 + V {displaystyle +V} 、 − V {displaystyle -V} ,则计算z+-半空间任意位置的电势这问题,由于边界条件的几何形状适合用直角坐标来描述,可以以直角坐标 ( x , y , z ) {displaystyle (x,y,z)} 将拉普拉斯方程表示为:因为这案例与x-坐标无关,方程可以简化为应用分离变数法,猜想解答的形式为将这公式代入拉普拉斯方程,则可得到注意到这方程的每一个项目都只含有一个变量,并且跟其它变量无关。所以,每一个项目都等于常数:这样,一个二次偏微分方程被改变为两个简单的二次常微分方程。解答分别为其中, A 1 ( k ) {displaystyle A_{1}(k)} 、 A 2 ( k ) {displaystyle A_{2}(k)} 、 B 1 ( k ) {displaystyle B_{1}(k)} 、 B 2 ( k ) {displaystyle B_{2}(k)} 都是系数函数。当 z {displaystyle z} 趋向于无穷大时, Z ( z ) {displaystyle Z(z)} 趋向于零,所以, B 1 = 0 {displaystyle B_{1}=0} 。综合起来,电势为由于在 z = 0 {displaystyle z=0} ,y+、y--半平面的电势分别为 + V {displaystyle +V} 、 − V {displaystyle -V} ,所以,应用傅里叶变换,可以得到所以,由 A 1 ( k ) {displaystyle A_{1}(k)} 项目贡献出的电势为类似地,由 A 2 ( k ) {displaystyle A_{2}(k)} 项目贡献出的电势为总电势为根据库仑定律,一个源位置为 r ′ {displaystyle mathbf {r} '} 的点电荷 q {displaystyle q} ,所产生在任意位置 r {displaystyle mathbf {r} } 的电场为对于一群点电荷,应用叠加原理,总电场等于每一个点电荷所产生的电场的叠加。体积区域 V ′ {displaystyle mathbb {V} '} 内部电荷密度为 ρ ( r ′ ) {displaystyle rho (mathbf {r} ')} 的电荷分布,在检验位置 r {displaystyle mathbf {r} } 所产生的电场为其中, d 3 r ′ {displaystyle mathrm {d} ^{3}r'} 是微小体积元素。应用一条矢量恒等式,可以得到设定在无穷远的电势为参考值0,则在任意位置的电势为应用一则关于狄拉克δ函数的矢量恒等式假设检验位置 r {displaystyle mathbf {r} } 在积分体积 V ′ {displaystyle mathbb {V} '} 内,则可得到泊松方程:所以,电势的方程(1)为泊松方程的解答。电势的方程(1)只考虑到一群电荷分布所产生的电势。假若遭遇边界条件为电势的静电学问题,就不能使用方程(1),必需使用更具功能的方法。根据格林第二恒等式,对于任意良态函数 ϕ ( r ) {displaystyle phi (mathbf {r} )} 与 ψ ( r ) {displaystyle psi (mathbf {r} )} ,其中, V {displaystyle mathbb {V} } 是积分体积, S {displaystyle mathbb {S} } 是包住 V {displaystyle mathbb {V} } 的闭表面, d 2 r {displaystyle mathrm {d} ^{2}r} 是微小面元素, ∂ ϕ ∂ n {displaystyle partial phi over partial n} 或 ∂ ϕ ∂ n {displaystyle partial phi over partial n} 都是取垂直于闭表面 S {displaystyle mathbb {S} } 的法向导数,都是从积分体积 V {displaystyle mathbb {V} } 朝外指出。设定 ϕ ( r ′ ) {displaystyle phi (mathbf {r} ')} 为在 r ′ {displaystyle mathbf {r} '} 的电势, ψ = 1 | r − r ′ | {displaystyle psi ={frac {1}{|mathbf {r} -mathbf {r} '|}}} 为 r ′ {displaystyle mathbf {r} '} 与 r {displaystyle mathbf {r} } 之间的距离。应用泊松方程 ∇ 2 ϕ ( r ) = − ρ / ϵ 0 {displaystyle nabla ^{2}phi (mathbf {r} )=-rho /epsilon _{0}} ,则可得到再应用矢量恒等式假设检验位置 r {displaystyle mathbf {r} } 在积分体积 V ′ {displaystyle mathbb {V} '} 内,则可得到这方程右手边的体积分就是电势的方程(1),而面积分就是因为边界条件而添加的项目。这是 V ′ {displaystyle mathbb {V} '} 体内与体外之间的边界曲面。面积分的第一个项目要求给定在边界曲面的法向电场,即 E n ′ = − ∂ ϕ ∂ n ′ {displaystyle E_{n'}=-{partial phi over partial n'}} ,也就是面感应电荷密度 σ = ϵ 0 E n ′ {displaystyle sigma =epsilon _{0}E_{n'}} 。面积分的第二个项目要求给定在边界曲面的电势 ϕ {displaystyle phi } 。假若能够知道积分体积内的电荷密度、在闭曲面的面电荷密度与电势,就可以计算出在积分体积内任意位置的电势。根据柯西边界条件,有时候,给定在边界曲面的法向电场与电势,可能会因为给定过多边界条件,而造成无法计算出一致的电势的状况。实际而言,只要给定法向电场或电势,两者之一,就可以计算出电势。假若积分体积为无穷大空间,当 r ′ {displaystyle r'} 趋向于无穷大时,则面积分的被积分项目会以 1 / r ′ 3 {displaystyle 1/r'^{3}} 速率递减,而积分面积会以 r ′ 2 {displaystyle r'^{2}} 速率递增,所以,面积分项目会趋向于零,这方程约化为先前的电势方程(1)。包括函数 1 / | r − r ′ | {displaystyle 1/|mathbf {r} -mathbf {r} '|} 在内,有一类函数 G ( r , r ′ ) {displaystyle G(mathbf {r} ,mathbf {r} ')} ,称为格林函数,能够满足方程另外,假设函数 H ( r , r ′ ) {displaystyle H(mathbf {r} ,mathbf {r} ')} 满足拉普拉斯方程则函数 G ′ ( r , r ′ ) = G ( r , r ′ ) + H ( r , r ′ ) {displaystyle G'(mathbf {r} ,mathbf {r} ')=G(mathbf {r} ,mathbf {r} ')+H(mathbf {r} ,mathbf {r} ')} 也是格林函数。应用这灵活性质,可以更严格地规定格林函数:这两种规定都能够唯一地设定格林函数。注意到格林函数是一个几何函数,与整个系统的电荷分布无关。对于任何系统,只要计算出适合其几何形状的格林函数,则不论系统的电荷分布为何,都可以使用同样的格林函数。假设xy-平面是接地的无限平面导体,则对于z+半空间、满足狄利克雷边界条件的格林函数为其中, ( x , y , z ) {displaystyle (x,y,z)} 、 ( x ′ , y ′ , z ′ ) {displaystyle (x',y',z')} 分别是检验位置 r {displaystyle mathbf {r} } 、源位置 r ′ {displaystyle mathbf {r} '} 的直角坐标。由于接地导体的电势为零,方程(2)的面积分项目等于零,方程(2)变为假设在位置 ( 0 , 0 , a ) {displaystyle (0,0,a)} 有点电荷 q {displaystyle q} ,则在z+半空间任意位置的电势为仔细检察这方程,右手边第一个项目,是在没有平面导体的状况时,点电荷 q {displaystyle q} 所产生的电势;右手边第二个项目,是使用镜像法时,镜像电荷 − q {displaystyle -q} 所产生的电势。请参阅镜像法条目的点电荷与无限平面导体段落。已知函数 1 / | r − r ′ | {displaystyle 1/|mathbf {r} -mathbf {r} '|} 为格林函数 G ( r , r ′ ) {displaystyle G(mathbf {r} ,mathbf {r} ')} ,满足方程在三维无限空间里, 1 / | r − r ′ | {displaystyle 1/|mathbf {r} -mathbf {r} '|} 的傅里叶级数为现在,必需找到格林函数 G D ( r , r ′ ) = G ( r , r ′ ) + H ( r , r ′ ) {displaystyle G_{D}(mathbf {r} ,mathbf {r} ')=G(mathbf {r} ,mathbf {r} ')+H(mathbf {r} ,mathbf {r} ')} ,满足狄利克雷边界条件 G D ( ( x , y , 0 ) , r ′ ) = 0 {displaystyle G_{D}((x,y,0),mathbf {r} ')=0} ,同时,函数 H ( r , r ′ ) {displaystyle H(mathbf {r} ,mathbf {r} ')} 满足拉普拉斯方程对于z+半空间, H ( r , r ′ ) {displaystyle H(mathbf {r} ,mathbf {r} ')} 以傅里叶级数扩张为对于x-坐标与对于y-坐标的傅里叶级数扩张, H {displaystyle H} 函数与 G {displaystyle G} 函数的形式相同。这是因为对于无限空间案例与无限平面导体案例,两种案例的x-边界条件与y-边界条件都相同,只有z-边界条件稍有改变。将 H {displaystyle H} 函数的方程代如, G D ( r , r ′ ) {displaystyle G_{D}(mathbf {r} ,mathbf {r} ')} 变为其中, B ( k , z ′ ) {displaystyle B(mathbf {k} ,z')} 与 C ( k , z ′ ) {displaystyle C(mathbf {k} ,z')} 都是系数函数。由于 G D ( ( x , y , 0 ) , r ′ ) = 0 {displaystyle G_{D}((x,y,0),mathbf {r} ')=0} ,对于任意 k {displaystyle mathbf {k} } 与 z ′ {displaystyle z'} , B ( k , z ′ ) {displaystyle B(mathbf {k} ,z')} 与 C ( k , z ′ ) {displaystyle C(mathbf {k} ,z')} 之间的关系为其中, B 0 {displaystyle B_{0}} 与 C 0 {displaystyle C_{0}} 都是系数常数,而且, B 0 + C 0 = − 1 {displaystyle B_{0}+C_{0}=-1}将这些公式代入 G D {displaystyle G_{D}} ,可以得到为了满足方程 ∇ 2 G D ( r , r ′ ) = − 4 π δ ( r − r ′ ) {displaystyle nabla ^{2}G_{D}(mathbf {r} ,mathbf {r} ')=-4pi delta (mathbf {r} -mathbf {r} ')} ,必需设定 B 0 = 0 {displaystyle B_{0}=0} 。所以,其中, r ″ = ( x ′ , y ′ , − z ′ ) {displaystyle mathbf {r} ''=(x',y',-z')} 是镜像电荷的位置。假设在xy-平面的无限平面导体被一条位于 y = 0 {displaystyle y=0} 的绝缘线条分为两半,两个处于y+、y--半平面的导体的电势分别设定为 + V {displaystyle +V} 与 − V {displaystyle -V} ,则由于 ρ ( r ′ ) = 0 {displaystyle rho (mathbf {r} ')=0} ,方程(2)变为注意到 V ′ {displaystyle mathbb {V} '} 是z+-半空间,xy-平面是其边界闭曲面的一部分,格林函数在xy-平面的法向导数的方向是朝着负z方向:V ′ {displaystyle mathbb {V} '} 的边界闭曲面在无穷远位置的电势为0,所以,只需要计算xy-平面给出的贡献,就可以得到在 V ′ {displaystyle mathbb {V} '} 内部任意位置的电势。将上述方程代入方程(3):假设磁场含时间(每当电场含时间,则此假设成立。逆过来亦成立),则不能简单地以标势 ϕ {displaystyle phi } 描述电场。因为根据法拉第电磁感应定律, ∇ × E = −   ∂ B ∂ t ≠ 0 {displaystyle mathbf {nabla } times mathbf {E} =- {frac {partial mathbf {B} }{partial t}}neq 0} ,电场不再具有保守性, ∫ E ⋅ d ℓ {displaystyle int mathbf {E} cdot mathrm {d} {boldsymbol {ell }}} 跟路径有关。替代地,在定义标势时,必须引入磁矢势 A {displaystyle mathbf {A} } ,定义为其中, B {displaystyle mathbf {B} } 是磁场。根据亥姆霍兹定理(Helmholtz theorem),假设一个矢量函数 F ( r ) {displaystyle mathbf {F} (mathbf {r} )} 满足以下两条件:其中, D ( r ) {displaystyle D(mathbf {r} )} 是个标量函数, C ( r ) {displaystyle mathbf {C} (mathbf {r} )} 是个矢量函数。再假设 D ( r ) {displaystyle D(mathbf {r} )} 和 C ( r ) {displaystyle mathbf {C} (mathbf {r} )} ,在无穷远处都足够快速地趋向0,则 F ( r ) {displaystyle mathbf {F} (mathbf {r} )} 可以用方程表达为在这里, ∇ {displaystyle nabla } 只作用于 r {displaystyle mathbf {r} } ,体积分的体积为 V ′ {displaystyle mathbb {V} '} 。采用库仑规范(Coulomb gauge),则磁矢势 A {displaystyle mathbf {A} } 遵守所以,注意到,以上这些推导,并没有涉及时间参数。加入时间参数 t {displaystyle t} ,结果也成立。所以,永远可以找到磁矢势 A {displaystyle mathbf {A} } :根据法拉第电磁感应定律,矢量场 G = E + ∂ A / ∂ t {displaystyle mathbf {G} =mathbf {E} +partial mathbf {A} /partial t} 是一个保守场:所以,必定可以找到标势 ϕ {displaystyle phi } ,满足 G = − ∇ ϕ {displaystyle mathbf {G} =-nabla phi } 。因此,下述方程成立:静电势只是这含时定义的一个特别案例,在这案例里,磁矢势 A {displaystyle mathbf {A} } 不含时间。从另一方面来说,对于含时矢量场,电场的路径积分与静电学的结果大不相同:

相关

  • 口腔医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学牙医学(法语:Dentisterie; 英语:Dentistr
  • 小肠小肠(英语:small intestine、拉丁语:Intestinum tenue)是消化系统的一部分,从在胃部后面一直延伸至大肠,是进行食物消化与吸收的主要器官。对于无脊椎动物而言,一般会采用消化系统
  • 枸橼酸钠柠檬酸钠(sodium citrate),又称枸橼酸钠,是一种有机酸钠盐。外观为白色到无色晶体,有肥皂水的味道。柠檬酸钠可由柠檬酸和氢氧化钠酸碱中和或与碳酸钠或碳酸氢钠发生复分解反应而
  • 主要组织相容性复合物主要组织相容性复合体(major histocompatibility complex,MHC),又称主要组织相容性复合基因,是存在于大部分脊椎动物基因组中的一个基因家族,与免疫系统密切相关,其中人类的MHC糖蛋
  • 亚伯达省阿尔伯塔省(英语、法语:Alberta),简称艾省、亚省、阿省,是加拿大的一个省。阿尔伯塔是加拿大西部草原三省之一,西部与不列颠哥伦比亚相邻,东部与萨斯喀彻温相邻,北部与西北地区相邻,
  • 原癌基因癌基因,也称为致癌基因(英语:Oncogene)是一类能使正常细胞转化为癌细胞的基因。一般地,癌基因是功能出现异常的原癌基因(英语:Proto-oncogene)。原癌基因一般与细胞的增殖生长相关,功
  • 斯拉夫语族斯拉夫语族是印欧语系的一个语族,产生于斯拉夫民族。可分为东斯拉夫语支、南斯拉夫语支及西斯拉夫语支,东斯拉夫语支及南斯拉夫语支使用西里尔字母,但也有例外,塞尔维亚语和克罗
  • 伍德沃德罗伯特·伯恩斯·伍德沃德(英语:Robert Burns Woodward,1917年4月10日-1979年7月8日),美国有机化学家,对现代有机合成做出了相当大的贡献,尤其是在化学合成和具有复杂结构的天然有机
  • 辅助因子辅因子(英语:cofactor)指与酶(酵素)结合且在催化反应中必要的非蛋白质化合物。某些分子如水和部分常见的离子所扮演的角色和辅因子相当类似,但由于含量不受限制且普遍存在,因此不归
  • 葡糖苷酶葡糖苷酶(英语:Glucosidases)是催化葡萄糖苷水解的糖苷水解酶,EC编号为3.2.1。其中α-葡糖苷酶是参与将复杂的碳水化合物如淀粉和糖原分解成单体的酶。葡糖苷酶催化各种糖类化合