莱昂哈德·歐拉

✍ dations ◷ 2024-12-23 06:40:46 #1707年出生,1783年逝世,瑞士物理学家,瑞士数学家,18世纪数学家,数论学家,地球空洞说,巴塞尔大学校友,瑞士新教徒,瑞士盲人,葬于季赫温公墓,圣彼得堡科

莱昂哈德·歐拉(德语:Leonhard Paul Euler,1707年4月15日-1783年9月18日)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。

欧拉在数学的多个领域,包括微积分和图论都做出过重大贡献。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。

欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作有60-80册。法国数学家皮埃尔-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。

欧拉出生于瑞士巴塞尔的一个牧师家庭,父亲保罗·欧拉(Paul Euler)是基督教加尔文宗的牧师,保罗·欧拉早年在巴塞尔大学学习神学,后娶了一位牧师的女儿玛格丽特·布鲁克(Marguerite Brucker),也就是欧拉的母亲。欧拉是他们6个孩子中的长子。在欧拉出生后不久,他们全家就从巴塞尔搬迁至郊外的里恩,在那里欧拉度过了他童年的大部分时光。

欧拉最早是从他的父亲那里接触到一些数学,后来欧拉搬回巴塞尔和他的外祖母住在一起,并在那里开始了他的正式学业,在中学时期,由于欧拉所在的学校并不教授数学,他便私下里从一位大学生那里学习。

欧拉13岁时进入了巴塞尔大学,主修哲学和法律,但在每周星期六下午便跟当时欧洲最优秀的数学家约翰·伯努利学习数学 。欧拉于1723年取得了他的哲学硕士学位,学位论文的内容是笛卡尔哲学和牛顿哲学的比较研究。之后,欧拉遵从了他父亲的意愿进入了神学系,学习神学,希腊语和希伯来语(欧拉的父亲希望欧拉成为一名牧师),但最终约翰·伯努利说服欧拉的父亲允许欧拉学习数学,并使他相信欧拉注定能成为一位伟大的数学家。1726年,欧拉完成了他的博士学位论文De Sono,内容是研究声音的传播。1727年,欧拉参加了法国科学院主办的有奖征文竞赛,当年的问题是找出船上的桅杆的最优放置方法。结果他得了二等奖,一等奖为被誉为“舰船建造学之父”的皮埃尔·布格所获得,不过欧拉随后在他一生中一共12次赢得该奖项一等奖。

这一时期,约翰·伯努利的两个儿子——丹尼尔·伯努利和尼古拉·伯努利——在位于俄国圣彼得堡的俄国皇家科学院工作,在尼古拉因阑尾炎于1726年7月去世后(此时距他来到俄国仅一年),丹尼尔便接替了他在数学/物理学所的职位,同时推荐欧拉来接替他自己在生理学所空出的职位。欧拉于1726年11月欣然接受了邀请,但并没有立即动身前往圣彼得堡,而是先申请巴塞尔大学的物理学教授,不过没有成功。

欧拉于1727年5月17日抵达圣彼得堡,在丹尼尔等人的请求下,科学院将欧拉指派到数学/物理学所工作,而不是起初的生理学所。欧拉与丹尼尔保持着密切的合作关系,并且与丹尼尔住在一起。在1727年至1730年间,欧拉还担任了俄国海军医官的职务。

俄国皇家科学院由彼得大帝于1724年创建,在彼得大帝和他的继任者凯瑟琳女皇主政时期,科学院是一个对外国学者具有吸引力的地方。科学院有充足的资金来源和一个规模庞大的综合图书馆,并且只招收非常少的学生,以减轻教授们的教学负担。科学院还非常重视研究,给予教授们充分的时间及自由,让他们探究科学问题 。

凯瑟琳女皇,同时也是科学院的资助者,于欧拉到达圣彼得堡的当天去世。其后彼得二世继位,彼得二世是个软弱的君主,实际权力由俄国贵族掌握。贵族们对科学院的外国科学家心存戒心,于是他们切断了对欧拉及其同事们的财政资助,并且在其它方面找他们的麻烦。

情况在彼得二世去世(1730年)后有所好转,欧拉在科学院的地位迅速得到提升,并于1731年获得物理学教授的职位。两年后,由于受不了在圣彼得堡受到的种种审查和敌视,丹尼尔·伯努利返回了巴塞尔,欧拉于是接替丹尼尔成为数学所所长 。1735年,欧拉还在科学院地理所担任职务,协助编制俄国第一张全境地图。

1734年1月7日,欧拉迎娶了科学院附属中学的美术教师,瑞士人乔治·葛塞尔(Georg Gsell)的女儿,柯黛琳娜·葛塞尔(Katharina Gsell,1707-1773) ,两人共育有13个子女,其中仅有5个活到成年。

考虑到俄国持续的动乱,欧拉在1741年6月19日离开了圣彼得堡,到柏林科学院就职,职位由腓特烈二世提供。他在柏林生活了25年,并写下了不止380篇文章。在柏林,他出版了他最有名的两部作品:关于函数方面的文章《无穷小分析引论》,出版于1748年;另一部是关于微分的《微积分概论》, 出版于1755年。 在1755年,他成为瑞典皇家科学院的外籍成员。

在欧拉的数学生涯中,他的视力一直在恶化。在1735年一次几乎致命的发烧后的三年,他的右眼近乎失明,但他把这归咎于他为圣彼得堡科学院进行的辛苦的地图学工作。在德国期间,他的视力也持续恶化。欧拉的原本正常的左眼后来又遭受了白内障的困扰。1766年,他在查出白内障的几个星期内,近乎完全失明。然而,欧拉的学术生产力似乎并未受到病痛影响,这大概归因于他的心算能力和超群的记忆力。比如,欧拉可以从头到尾不犹豫地背诵维吉尔的史诗《埃涅阿斯纪》,并能指出他所背诵的那个版本的每一页的第一行和最后一行是什么。在文职人员的帮助下,欧拉在多个领域的研究其实变得更加丰富了。在1775年,他平均每周就完成一篇数学论文。

欧拉年轻时曾研读神学,他一生虔诚、笃信上帝,并不能容许任何诋毁上帝的言论在他面前发表。有一个广泛流传的传说说到,欧拉在叶卡捷琳娜二世的宫廷里,挑战当时造访宫廷的无神论者德尼·狄德罗:“”不懂数学的德尼完全不知怎么应对,只好投降。但是由于狄德罗事实上也是一位有作为的数学家,这个传说有可能属于虚构。

欧拉是史上发表论文数第二多的数学家,全集共计75卷;他的纪录一直到了20世纪才被保羅·埃尔德什打破。后者发表的论文达1525篇,著作有32部。欧拉在他的时代,产量之多,无人能及。欧拉实际上支配了18世纪至现在的数学;对于当时新数学分支微积分,他推导出了很多结果。很多数学的分枝,也是由欧拉所创或因而有了极大的进展。

在1765年至1771年据说是因歐拉双眼直接观察太阳,双眼先后失明。尽管人生最后7年,欧拉的双目完全失明,他还是以惊人的速度产出了生平一半的著作。

1783年9月18日,晚餐后,欧拉一边喝着茶,一边和小孙女玩耍,突然之间,烟斗从他手中掉了下来。他说了一声:“我的烟斗”,并弯腰去捡,结果再也没有站起来,他抱着头说了一句:“我死了”。“”。后面这句经常被数学史家引用的话,出自法国哲学家兼数学家孔多塞之口:“...il cessa de calculer et de vivre”(he ceased to calculate and to live)。

歐拉的数学符号引进和推广,并通过他的许多教科书广为流传。最为著名的,是他引进了“函数”的概念,并且第一个将函数的写为f(x),以表示一个以x为自变量的函数。他还介绍了三角函数现代符号,以e表记自然对数的底(现在也称作欧拉数),用希腊字母Σ表记累加和以i表示虚数单位。用希腊字母π来表示一个圆的周长和直径之比也由欧拉普及,但它并不是由他发明。

欧拉建立了弹性体的力矩定律:作用在弹性细长杆上的力矩正比于物质的弹性和通过质心轴和垂直于两者的截面的转动惯量。

他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。这些方程组在形式上等价于粘度为0的纳维-斯托克斯方程。人们对这些方程的主要兴趣在于它们能被用来研究冲击波。

他对微分方程理论作出了重要贡献。他还是欧拉近似法的创始人,这些计算法被用于计算力学中。此中最有名的被称为欧拉方法。

在数论里他引入了欧拉函数。自然数 n {displaystyle n} ”的则是欧拉公式的一个简单推论(通常被称为欧拉恒等式):

他在1735年定义了微分方程中的歐拉-马斯刻若尼常数,也是歐拉-麦克劳林求和公式的发现者之一,这一公式在计算难于计算的积分、求和与级数的时候极为有效:

欧拉还发现了公式的 V - e + f = 2 的数量与顶点(Vertex, V),边(edge, e)和面(face, f)的凸多面体,因此,对一个平面图形。此公式中的常数是现在被称为欧拉示性数的图形(或其他数学对象),是有关属的对象。研究和推广这一公式,特别是通过柯西和欧莱雅Huillier,是在原点的拓扑结构。

欧拉在1736年解决了柯尼斯堡七桥问题,并且发表了论文《关于位置几何问题的解法》(Solutio problematis ad geometriam situs pertinentis),对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范。

在1739年,欧拉写下了《音乐新理论的尝试(Tentamen novae theoriae musicae)》,书中试图把数学和音乐结合起来。一位传记作家写道:这是一部“为精通数学的音乐家和精通音乐的数学家而写的”著作。

在经济学方面,欧拉证明,如果产品的每个要素正好用于支付它自身的边际产量,在固定规模报酬的情形下,总收入和产出将完全耗尽。

在几何学和代数拓扑学方面,欧拉公式给出了单连通多面体的边、顶点和面之间存在的关系:

其中,F为给定多面体的面数之和,E为边数之和,V为顶点数之和。这个定理也可用于平面图。对非平面图,欧拉公式可以推广为:如果一个图可以被嵌入一个流形 M {displaystyle M} ,则:

其中χ为此流形的欧拉示性数,在流形的连续变形下是不变量。单连通流形(例如球面或平面)的欧拉特征值是2。对任意的平面图,欧拉公式可以推广为: F E + V C = 1 {displaystyle F-E+V-C=1} ,其中 C {displaystyle C} 为图中连通分支数。

数独是歐拉发明的拉丁方的概念,在当时并不流行,直到20世纪由日本上班族锻治真起带起流行。

据统计,歐拉生前平均每年发表八百页的学术论文,内容涵盖多个学术范畴。1911年,数学界系统地开始出版歐拉的著作,并定名为《歐拉全集》(Opera Omnia),迄今已出版七十多卷,平均每卷厚达五百多页,重约四磅。预计《歐拉全集》全部出齐时约重三百磅。

歐拉是第六系列瑞士10法郎的钞票以及德国、俄罗斯邮票的主角。在2002年,小行星2002被命名为歐拉。基督教新教-路德教派将圣徒日历上五月二十四日定为纪念歐拉的日子。歐拉是一位虔诚的基督教徒,相信圣经是正确而没有错误的,并且极力地反对那些拥有无神论思想的人们。

日内瓦大学在智利拉西拉天文台建立的口径1.2米望远镜命名为莱昂哈德·歐拉望远镜。

2013年4月15日Google以doodle纪念欧拉306周年诞辰,展示了欧拉角、欧拉公式、欧拉恒等式、欧拉示性数和七桥问题等。

相关

  • 心脏移植心脏移植手术是一种内脏器官移植的心脏外科手术,不同于其它器官移植手术,在征得供体本人及亲属同意的前提下,心脏移植手术一般是将已判定为脑死亡并配型成功的人类的心脏完整取
  • 中美洲自由贸易协议美国—多米尼加—中美洲自由贸易协定(英语:U.S.-Dominican Republic-Central America Free Trade Agreement,DR-CAFTA)是美国与中美洲5国(尼加拉瓜、洪都拉斯、萨尔瓦多、危地马
  • 道真仡佬族苗族自治县道真仡佬族苗族自治县是中华人民共和国贵州省遵义市下属的一个自治县,位于遵义市东北部,地处黔北通往成渝的交通要道,是中国仅有的3个仡佬族自治县之一。相传汉儒尹珍(字道真)先
  • 应永外寇应永外寇指的是1419年(己亥年,日本应永26年)朝鲜王朝进攻日本对马岛的事件。“应永外寇”日本方面对此战事的称呼,朝鲜则称之为己亥东征、己亥征倭役或者第三次对马岛征伐(제3차
  • 亚历山大·伊万诺维奇·克里尼茨基亚历山大·伊万诺维奇·克里尼茨基(俄语:Алекса́ндр Ива́нович Крини́цкий,1894年8月28日(9月9日)-1937年10月30日)是全联盟共产党(布尔什维克)中央组
  • 秋水镜秋水镜(朝鲜语:추수경/秋水鏡;1530年-1600年9月9日),明代贵州出身的武将,在万历朝鲜之役任李如松副将,朝鲜氏族全州秋氏(朝鲜语:추계 추씨)始祖。1591年任武康刺史,在1592年丰臣秀吉侵略
  • 方亨咸方亨咸(?-?),字吉偶、吉儒,号邵邨、邵村,南京安庆府桐城县人,清朝政治人物、进士出身。方拱乾之子、方玄成之弟、方章钺之兄。顺治丙戌举人。顺治四年,登进士,授刑部浙江清吏司员外郎、
  • 后蜀263﹣581 益州 蜀郡 新都郡 汉嘉郡 汶山郡 江阳郡 犍为郡 越巂郡 梁州 巴郡 广汉郡 巴西郡 巴东郡 梓潼郡 涪陵郡 • 成汉 304 – 347 • 谯蜀 405 – 413巴蜀所属政权变更史
  • 镰仓由实镰仓由实(日语:鎌倉 由実/かまくら ゆみ),日本女性动画师、演出家。出身于北海道。早年参加动画公司Production I.G作品从事制作进行一职,2001年负责《樱花大战 活动写真(日语:サク
  • 冈本真夜冈本真夜(日语:岡本 真夜/おかもと まよ  */?,1974年1月9日-),日本女性创作歌手、钢琴家,生于日本高知县中村市(今四万十市)。代表作是《TOMORROW》,因为此曲成名而获邀在NHK红白歌合