二次互反律的证明

✍ dations ◷ 2025-07-21 19:03:31 #自2019年12月需要数学专家关注的页面

这个条目给出了二次互反律的证明。

对于两个奇素数 p , q {\displaystyle p,q} ( p q ) ( q p ) = ( 1 ) ( p 1 ) ( q 1 ) 4 {\displaystyle \left({\frac {p}{q}}\right)\cdot \left({\frac {q}{p}}\right)=(-1)^{\frac {(p-1)(q-1)}{4}}} 。其中, ( p q ) {\displaystyle \left({\frac {p}{q}}\right)} 是勒让德符号。

p {\displaystyle p} 是一个奇素数并且 a 0 mod p {\displaystyle a\not \equiv 0\mod p} 。对于每个 k = 1 , 2 , . . . , p 1 2 {\displaystyle k=1,2,...,{\frac {p-1}{2}}} ,这样定义 ϵ k {\displaystyle \epsilon _{k}} r k {\displaystyle r_{k}}

a k ϵ k r k mod p {\displaystyle ak\equiv \epsilon _{k}r_{k}\mod p} ,其中 0 < r k < p 2 {\displaystyle 0<r_{k}<{\frac {p}{2}}} ϵ k = ± 1 {\displaystyle \epsilon _{k}=\pm 1} 。通过分别考虑 ϵ k = 1 {\displaystyle \epsilon _{k}=1} ϵ k = 1 {\displaystyle \epsilon _{k}=-1} 的情况,易证每个 r k {\displaystyle r_{k}} 都两两不等。

现在考虑 k = 1 ( p 1 ) / 2 a k k = 1 ( p 1 ) / 2 ϵ k k = 1 ( p 1 ) / 2 r k mod p {\displaystyle \prod _{k=1}^{(p-1)/2}ak\equiv \prod _{k=1}^{(p-1)/2}\epsilon _{k}\prod _{k=1}^{(p-1)/2}r_{k}\mod p} 。因为每个 r k {\displaystyle r_{k}} 都两两不等,所以 { r 1 , r 2 , . . . , r p 1 2 } {\displaystyle \{r_{1},r_{2},...,r_{\frac {p-1}{2}}\}} 就是 { 1 , 2 , . . . , p 1 2 } {\displaystyle \{1,2,...,{\frac {p-1}{2}}\}} 的一个重排列。所以我们得到 a p 1 2 k = 1 ( p 1 ) / 2 k k = 1 ( p 1 ) / 2 ϵ k k = 1 ( p 1 ) / 2 k mod p {\displaystyle a^{\frac {p-1}{2}}\prod _{k=1}^{(p-1)/2}k\equiv \prod _{k=1}^{(p-1)/2}\epsilon _{k}\prod _{k=1}^{(p-1)/2}k\mod p} ,因此 a p 1 2 k = 1 ( p 1 ) / 2 ϵ k mod p {\displaystyle a^{\frac {p-1}{2}}\equiv \prod _{k=1}^{(p-1)/2}\epsilon _{k}\mod p}

现在考虑 ϵ k {\displaystyle \epsilon _{k}} 的正负情况。 a k ϵ k r k mod p {\displaystyle ak\equiv \epsilon _{k}r_{k}\mod p} 等价于 a k = ϵ k r k + b p , b Z {\displaystyle ak=\epsilon _{k}r_{k}+bp,b\in \mathbb {Z} } 。若 ϵ k = 1 {\displaystyle \epsilon _{k}=1} ,则有 a k = r k + b p {\displaystyle ak=r_{k}+bp} 。注意到 0 < r k < p 2 {\displaystyle 0<r_{k}<{\frac {p}{2}}} ,将等式两边同时乘2得到 2 a k = R k + B k p {\displaystyle 2ak=R_{k}+B_{k}p} ,其中 R k = 2 r k , 0 < R k < p , B k = 2 b {\displaystyle R_{k}=2r_{k},0<R_{k}<p,B_{k}=2b} ,可以发现 B k {\displaystyle B_{k}} 是偶数,而 2 a k p = R k p + B k = B k {\displaystyle \lfloor {\frac {2ak}{p}}\rfloor =\lfloor {\frac {R_{k}}{p}}+B_{k}\rfloor =B_{k}} 也是偶数。同理可证若 ϵ k = 1 {\displaystyle \epsilon _{k}=-1} B k = 2 b + 1 {\displaystyle B_{k}=2b+1} ,而 2 a k p {\displaystyle \lfloor {\frac {2ak}{p}}\rfloor } 是奇数。据此,可以知道 sgn ( r k ) = 2 a k p {\displaystyle \operatorname {sgn}(r_{k})=\lfloor {\frac {2ak}{p}}\rfloor } ,其中 sgn ( r k ) {\displaystyle \operatorname {sgn}(r_{k})} r k {\displaystyle r_{k}} 的符号,也就是 ϵ k = 1 {\displaystyle \epsilon _{k}=1} 还是 ϵ k = 1 {\displaystyle \epsilon _{k}=-1}

所以 a p 1 2 ( 1 ) k = 1 ( p 1 ) / 2 2 a k / p mod p {\displaystyle a^{\frac {p-1}{2}}\equiv (-1)^{\sum _{k=1}^{(p-1)/2}\lfloor 2ak/p\rfloor }\mod p} 。又由欧拉准则知 ( a p ) a p 1 2 mod p {\displaystyle \left({\frac {a}{p}}\right)\equiv a^{\frac {p-1}{2}}\mod p} ,所以 ( a p ) = ( 1 ) k = 1 ( p 1 ) / 2 2 a k / p {\displaystyle \left({\frac {a}{p}}\right)=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor 2ak/p\rfloor }}

如果 a {\displaystyle a} 是奇数,同时考虑勒让德符号的性质 ( a p ) ( b p ) = ( a b p ) {\displaystyle \left({\frac {a}{p}}\right)\left({\frac {b}{p}}\right)=\left({\frac {ab}{p}}\right)} ,可知 ( a p ) ( 2 p ) = ( 2 a + 2 p p ) = ( 4 ( a + p 2 ) p ) = ( 1 ) k = 1 ( p 1 ) / 2 2 ( a + p 2 ) k p = ( 1 ) k = 1 ( p 1 ) / 2 a k p ( 1 ) k = 1 ( p 1 ) / 2 k = ( 1 ) k = 1 ( p 1 ) / 2 a k p ( 1 ) p 2 1 8 {\displaystyle \left({\frac {a}{p}}\right)\left({\frac {2}{p}}\right)=\left({\frac {2a+2p}{p}}\right)=\left({\frac {4\left({\frac {a+p}{2}}\right)}{p}}\right)=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {2\left({\frac {a+p}{2}}\right)k}{p}}\rfloor }=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {ak}{p}}\rfloor }(-1)^{\sum _{k=1}^{(p-1)/2}k}=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {ak}{p}}\rfloor }(-1)^{\frac {p^{2}-1}{8}}} ,其中最后一步利用了等差数列的求和公式。

但是,当 a = 1 {\displaystyle a=1} 时,由上式可得 ( 2 p ) = ( 1 p ) ( 2 p ) = ( 1 ) k = 1 ( p 1 ) / 2 k p ( 1 ) p 2 1 8 = ( 1 ) p 2 1 8 {\displaystyle \left({\frac {2}{p}}\right)=\left({\frac {1}{p}}\right)\left({\frac {2}{p}}\right)=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {k}{p}}\rfloor }(-1)^{\frac {p^{2}-1}{8}}=(-1)^{\frac {p^{2}-1}{8}}} ,所以 ( a p ) = ( 1 ) k = 1 ( p 1 ) / 2 a k p {\displaystyle \left({\frac {a}{p}}\right)=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {ak}{p}}\rfloor }}

相关

  • J. Org. Chem.《有机化学期刊》(the Journal of Organic Chemistry,常缩写为 J. Org. Chem. 或JOC)是由美国化学会发行的有关有机化学的学术期刊。该期刊的影响因子为4.721(2014年)。
  • 颅面头在解剖学上是指动物的吻端部分,通常包括脑、眼、耳、鼻、口等器官(所有这些器官都支撑着各种感官功能,如视觉、听觉、嗅觉、味觉)。有些非常低等的动物可能没有头部,但多数两侧
  • 明初明初官话音系,即明朝前期北方汉语官话的语音系统,属于近代汉语。《太祖实录》洪武八年三月:“是月《洪武正韵》成。初,上(明太祖)以旧韵起于江东,多失正音,乃命……以中原雅音校正之
  • 图尔格图尔格(?年-1645年),钮祜禄氏,满洲镶白旗人,后金开国五大臣之首额亦都第八子。顺治帝遗命的四位顾命大臣之一遏必隆之兄。图尔格年少时跟从努尔哈赤征伐,累积功绩授封世职参将。娶和
  • 沈刚伯沈刚伯(1896年12月4日-1977年7月31日),中华民国历史学家。湖北宜昌三斗坪人。自幼受留日归国的父亲沈莘庵教诲,读毕《左传》、《国语》、《国策》、《国礼》、《礼记》后,于11岁,19
  • 北京申办奥运会国际奥林匹克委员会第112次全体会议于2001年7月12日至16日在俄罗斯莫斯科召开,此次会议的主要议程包括投票产生2008年夏季奥林匹克运动会主办城市及选举第8任国际奥林匹克委
  • 5′端帽5′端帽(Five-prime cap)是在真核生物中信使RNA(mRNA)的5′端经修改后形成的的双核苷酸端点。5′加帽的过程对建立成熟的mRNA作翻译非常重要。加帽确保了mRNA在蛋白质生物合成
  • 褐色褐色又称茶色,是由混合小量红色及绿色,橙色及蓝色,或黄色及紫色颜料构成的颜色。棕色只有在更亮的颜色对比下才看得出来。
  • 硝酸钴硝酸钴,化学式Co(NO3)2。硝酸钴是一种红色单斜柱状结晶,在潮湿空气中易潮解,易溶于水、乙醇、丙酮和乙酸甲酯,微溶于氨水,水溶液呈红色。55°C失去3个结晶水,再加热则失去1个结晶
  • 嵌体嵌体(inlay)是一种嵌入牙体内部,用以恢复牙体缺损的形态和功能的修复体。牙体预备后,剩余部分的牙体可以耐受功能状态下的各项应力不折裂,并能为嵌体提供足够的支持、固位和抗力