二次互反律的证明

✍ dations ◷ 2025-09-18 10:02:10 #自2019年12月需要数学专家关注的页面

这个条目给出了二次互反律的证明。

对于两个奇素数 p , q {\displaystyle p,q} ( p q ) ( q p ) = ( 1 ) ( p 1 ) ( q 1 ) 4 {\displaystyle \left({\frac {p}{q}}\right)\cdot \left({\frac {q}{p}}\right)=(-1)^{\frac {(p-1)(q-1)}{4}}} 。其中, ( p q ) {\displaystyle \left({\frac {p}{q}}\right)} 是勒让德符号。

p {\displaystyle p} 是一个奇素数并且 a 0 mod p {\displaystyle a\not \equiv 0\mod p} 。对于每个 k = 1 , 2 , . . . , p 1 2 {\displaystyle k=1,2,...,{\frac {p-1}{2}}} ,这样定义 ϵ k {\displaystyle \epsilon _{k}} r k {\displaystyle r_{k}}

a k ϵ k r k mod p {\displaystyle ak\equiv \epsilon _{k}r_{k}\mod p} ,其中 0 < r k < p 2 {\displaystyle 0<r_{k}<{\frac {p}{2}}} ϵ k = ± 1 {\displaystyle \epsilon _{k}=\pm 1} 。通过分别考虑 ϵ k = 1 {\displaystyle \epsilon _{k}=1} ϵ k = 1 {\displaystyle \epsilon _{k}=-1} 的情况,易证每个 r k {\displaystyle r_{k}} 都两两不等。

现在考虑 k = 1 ( p 1 ) / 2 a k k = 1 ( p 1 ) / 2 ϵ k k = 1 ( p 1 ) / 2 r k mod p {\displaystyle \prod _{k=1}^{(p-1)/2}ak\equiv \prod _{k=1}^{(p-1)/2}\epsilon _{k}\prod _{k=1}^{(p-1)/2}r_{k}\mod p} 。因为每个 r k {\displaystyle r_{k}} 都两两不等,所以 { r 1 , r 2 , . . . , r p 1 2 } {\displaystyle \{r_{1},r_{2},...,r_{\frac {p-1}{2}}\}} 就是 { 1 , 2 , . . . , p 1 2 } {\displaystyle \{1,2,...,{\frac {p-1}{2}}\}} 的一个重排列。所以我们得到 a p 1 2 k = 1 ( p 1 ) / 2 k k = 1 ( p 1 ) / 2 ϵ k k = 1 ( p 1 ) / 2 k mod p {\displaystyle a^{\frac {p-1}{2}}\prod _{k=1}^{(p-1)/2}k\equiv \prod _{k=1}^{(p-1)/2}\epsilon _{k}\prod _{k=1}^{(p-1)/2}k\mod p} ,因此 a p 1 2 k = 1 ( p 1 ) / 2 ϵ k mod p {\displaystyle a^{\frac {p-1}{2}}\equiv \prod _{k=1}^{(p-1)/2}\epsilon _{k}\mod p}

现在考虑 ϵ k {\displaystyle \epsilon _{k}} 的正负情况。 a k ϵ k r k mod p {\displaystyle ak\equiv \epsilon _{k}r_{k}\mod p} 等价于 a k = ϵ k r k + b p , b Z {\displaystyle ak=\epsilon _{k}r_{k}+bp,b\in \mathbb {Z} } 。若 ϵ k = 1 {\displaystyle \epsilon _{k}=1} ,则有 a k = r k + b p {\displaystyle ak=r_{k}+bp} 。注意到 0 < r k < p 2 {\displaystyle 0<r_{k}<{\frac {p}{2}}} ,将等式两边同时乘2得到 2 a k = R k + B k p {\displaystyle 2ak=R_{k}+B_{k}p} ,其中 R k = 2 r k , 0 < R k < p , B k = 2 b {\displaystyle R_{k}=2r_{k},0<R_{k}<p,B_{k}=2b} ,可以发现 B k {\displaystyle B_{k}} 是偶数,而 2 a k p = R k p + B k = B k {\displaystyle \lfloor {\frac {2ak}{p}}\rfloor =\lfloor {\frac {R_{k}}{p}}+B_{k}\rfloor =B_{k}} 也是偶数。同理可证若 ϵ k = 1 {\displaystyle \epsilon _{k}=-1} B k = 2 b + 1 {\displaystyle B_{k}=2b+1} ,而 2 a k p {\displaystyle \lfloor {\frac {2ak}{p}}\rfloor } 是奇数。据此,可以知道 sgn ( r k ) = 2 a k p {\displaystyle \operatorname {sgn}(r_{k})=\lfloor {\frac {2ak}{p}}\rfloor } ,其中 sgn ( r k ) {\displaystyle \operatorname {sgn}(r_{k})} r k {\displaystyle r_{k}} 的符号,也就是 ϵ k = 1 {\displaystyle \epsilon _{k}=1} 还是 ϵ k = 1 {\displaystyle \epsilon _{k}=-1}

所以 a p 1 2 ( 1 ) k = 1 ( p 1 ) / 2 2 a k / p mod p {\displaystyle a^{\frac {p-1}{2}}\equiv (-1)^{\sum _{k=1}^{(p-1)/2}\lfloor 2ak/p\rfloor }\mod p} 。又由欧拉准则知 ( a p ) a p 1 2 mod p {\displaystyle \left({\frac {a}{p}}\right)\equiv a^{\frac {p-1}{2}}\mod p} ,所以 ( a p ) = ( 1 ) k = 1 ( p 1 ) / 2 2 a k / p {\displaystyle \left({\frac {a}{p}}\right)=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor 2ak/p\rfloor }}

如果 a {\displaystyle a} 是奇数,同时考虑勒让德符号的性质 ( a p ) ( b p ) = ( a b p ) {\displaystyle \left({\frac {a}{p}}\right)\left({\frac {b}{p}}\right)=\left({\frac {ab}{p}}\right)} ,可知 ( a p ) ( 2 p ) = ( 2 a + 2 p p ) = ( 4 ( a + p 2 ) p ) = ( 1 ) k = 1 ( p 1 ) / 2 2 ( a + p 2 ) k p = ( 1 ) k = 1 ( p 1 ) / 2 a k p ( 1 ) k = 1 ( p 1 ) / 2 k = ( 1 ) k = 1 ( p 1 ) / 2 a k p ( 1 ) p 2 1 8 {\displaystyle \left({\frac {a}{p}}\right)\left({\frac {2}{p}}\right)=\left({\frac {2a+2p}{p}}\right)=\left({\frac {4\left({\frac {a+p}{2}}\right)}{p}}\right)=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {2\left({\frac {a+p}{2}}\right)k}{p}}\rfloor }=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {ak}{p}}\rfloor }(-1)^{\sum _{k=1}^{(p-1)/2}k}=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {ak}{p}}\rfloor }(-1)^{\frac {p^{2}-1}{8}}} ,其中最后一步利用了等差数列的求和公式。

但是,当 a = 1 {\displaystyle a=1} 时,由上式可得 ( 2 p ) = ( 1 p ) ( 2 p ) = ( 1 ) k = 1 ( p 1 ) / 2 k p ( 1 ) p 2 1 8 = ( 1 ) p 2 1 8 {\displaystyle \left({\frac {2}{p}}\right)=\left({\frac {1}{p}}\right)\left({\frac {2}{p}}\right)=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {k}{p}}\rfloor }(-1)^{\frac {p^{2}-1}{8}}=(-1)^{\frac {p^{2}-1}{8}}} ,所以 ( a p ) = ( 1 ) k = 1 ( p 1 ) / 2 a k p {\displaystyle \left({\frac {a}{p}}\right)=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {ak}{p}}\rfloor }}

相关

  • X-三体综合征 (47,XXX)三染色体X综合征是一种人类女性的性染色体疾病;一般女性的性染色体是XX,而患者为XXX。患有该综合征的患者又因其基因行为XXX,被称做超雌性。与XYY三体患者不同的是,三染色体X综
  • 扁桃腺结石扁桃腺结石(英语:Tonsilloliths、tonsil stones或tonsilar calculi)是口腔内藏于腭扁桃体(英语:Palatine tonsil)上的钙化物,米粒至爆谷大小,重300毫克(0.011盎司)至42克(1.5盎司),可导致
  • 正常窦性节律在一周期的心脏律动中,如果心肌的去极化从窦房结开始,则称为窦性心律(英文:sinus rhythm)。其特点是心电图(ECG)中展示方向正确的P波(英语:P wave (electrocardiography))。窦性心律是
  • 湍流层顶湍流层顶,又称均质层顶,是均质层(英语:homosphere)与非均质层(英语:heterosphere)的分界线。湍流层顶位于中间层附近,大致处在中间层和热层的交汇处。其大致位于海拔100km处。其以下
  • 坡头区坡头区是中国广东省湛江市下辖的一个市辖区。坡头区人民政府驻南调街道,面积424平方千米,人口39.38万。 基本概况 编辑坡头是湛江市辖区,位于广东省西南部,雷州半岛东北部,湛江
  • 西樵山西樵山, 是一座具有四五千万年历史的死火山,位于中国广东省佛山市南海区的西南部,距广州市68公里,是国家重点风景名胜区、国家森林公园和国家地质公园。西樵山总面积14平方公里
  • 巴巴多斯元巴巴多斯元是巴巴多斯自1882年起的流通货币。货币编号BBD。 辅币单位为分,1元=100分。
  • 枝鳃亚目对虾总科 Penaeoidea樱虾总科 SergestoideaPenaeidea Dana, 1852枝鳃亚目(Dendrobranchiata),是甲壳类动物十足目下属的一个亚目,具有五对足。它现存540个物种,其最早的化石纪录
  • 哈尔滨市 (中华人民共和国直辖市)哈尔滨直辖市是中华人民共和国短暂设置的中央直辖市。中华人民共和国建国时,哈尔滨市为松江省省会。1953年7月8日,哈尔滨市设立为中央直辖市。1954年6月19日,中央人民政府委员
  • 小行星3122小行星3122(英语:3122 Florence,中文多直译为佛罗伦斯)是一颗围绕太阳公转的小行星。1981年3月2日,舒尔特·巴斯在赛丁泉山发现了此天体。这颗小行星的绝对星等为700113869999999