二次互反律的证明

✍ dations ◷ 2025-10-31 12:02:52 #自2019年12月需要数学专家关注的页面

这个条目给出了二次互反律的证明。

对于两个奇素数 p , q {\displaystyle p,q} ( p q ) ( q p ) = ( 1 ) ( p 1 ) ( q 1 ) 4 {\displaystyle \left({\frac {p}{q}}\right)\cdot \left({\frac {q}{p}}\right)=(-1)^{\frac {(p-1)(q-1)}{4}}} 。其中, ( p q ) {\displaystyle \left({\frac {p}{q}}\right)} 是勒让德符号。

p {\displaystyle p} 是一个奇素数并且 a 0 mod p {\displaystyle a\not \equiv 0\mod p} 。对于每个 k = 1 , 2 , . . . , p 1 2 {\displaystyle k=1,2,...,{\frac {p-1}{2}}} ,这样定义 ϵ k {\displaystyle \epsilon _{k}} r k {\displaystyle r_{k}}

a k ϵ k r k mod p {\displaystyle ak\equiv \epsilon _{k}r_{k}\mod p} ,其中 0 < r k < p 2 {\displaystyle 0<r_{k}<{\frac {p}{2}}} ϵ k = ± 1 {\displaystyle \epsilon _{k}=\pm 1} 。通过分别考虑 ϵ k = 1 {\displaystyle \epsilon _{k}=1} ϵ k = 1 {\displaystyle \epsilon _{k}=-1} 的情况,易证每个 r k {\displaystyle r_{k}} 都两两不等。

现在考虑 k = 1 ( p 1 ) / 2 a k k = 1 ( p 1 ) / 2 ϵ k k = 1 ( p 1 ) / 2 r k mod p {\displaystyle \prod _{k=1}^{(p-1)/2}ak\equiv \prod _{k=1}^{(p-1)/2}\epsilon _{k}\prod _{k=1}^{(p-1)/2}r_{k}\mod p} 。因为每个 r k {\displaystyle r_{k}} 都两两不等,所以 { r 1 , r 2 , . . . , r p 1 2 } {\displaystyle \{r_{1},r_{2},...,r_{\frac {p-1}{2}}\}} 就是 { 1 , 2 , . . . , p 1 2 } {\displaystyle \{1,2,...,{\frac {p-1}{2}}\}} 的一个重排列。所以我们得到 a p 1 2 k = 1 ( p 1 ) / 2 k k = 1 ( p 1 ) / 2 ϵ k k = 1 ( p 1 ) / 2 k mod p {\displaystyle a^{\frac {p-1}{2}}\prod _{k=1}^{(p-1)/2}k\equiv \prod _{k=1}^{(p-1)/2}\epsilon _{k}\prod _{k=1}^{(p-1)/2}k\mod p} ,因此 a p 1 2 k = 1 ( p 1 ) / 2 ϵ k mod p {\displaystyle a^{\frac {p-1}{2}}\equiv \prod _{k=1}^{(p-1)/2}\epsilon _{k}\mod p}

现在考虑 ϵ k {\displaystyle \epsilon _{k}} 的正负情况。 a k ϵ k r k mod p {\displaystyle ak\equiv \epsilon _{k}r_{k}\mod p} 等价于 a k = ϵ k r k + b p , b Z {\displaystyle ak=\epsilon _{k}r_{k}+bp,b\in \mathbb {Z} } 。若 ϵ k = 1 {\displaystyle \epsilon _{k}=1} ,则有 a k = r k + b p {\displaystyle ak=r_{k}+bp} 。注意到 0 < r k < p 2 {\displaystyle 0<r_{k}<{\frac {p}{2}}} ,将等式两边同时乘2得到 2 a k = R k + B k p {\displaystyle 2ak=R_{k}+B_{k}p} ,其中 R k = 2 r k , 0 < R k < p , B k = 2 b {\displaystyle R_{k}=2r_{k},0<R_{k}<p,B_{k}=2b} ,可以发现 B k {\displaystyle B_{k}} 是偶数,而 2 a k p = R k p + B k = B k {\displaystyle \lfloor {\frac {2ak}{p}}\rfloor =\lfloor {\frac {R_{k}}{p}}+B_{k}\rfloor =B_{k}} 也是偶数。同理可证若 ϵ k = 1 {\displaystyle \epsilon _{k}=-1} B k = 2 b + 1 {\displaystyle B_{k}=2b+1} ,而 2 a k p {\displaystyle \lfloor {\frac {2ak}{p}}\rfloor } 是奇数。据此,可以知道 sgn ( r k ) = 2 a k p {\displaystyle \operatorname {sgn}(r_{k})=\lfloor {\frac {2ak}{p}}\rfloor } ,其中 sgn ( r k ) {\displaystyle \operatorname {sgn}(r_{k})} r k {\displaystyle r_{k}} 的符号,也就是 ϵ k = 1 {\displaystyle \epsilon _{k}=1} 还是 ϵ k = 1 {\displaystyle \epsilon _{k}=-1}

所以 a p 1 2 ( 1 ) k = 1 ( p 1 ) / 2 2 a k / p mod p {\displaystyle a^{\frac {p-1}{2}}\equiv (-1)^{\sum _{k=1}^{(p-1)/2}\lfloor 2ak/p\rfloor }\mod p} 。又由欧拉准则知 ( a p ) a p 1 2 mod p {\displaystyle \left({\frac {a}{p}}\right)\equiv a^{\frac {p-1}{2}}\mod p} ,所以 ( a p ) = ( 1 ) k = 1 ( p 1 ) / 2 2 a k / p {\displaystyle \left({\frac {a}{p}}\right)=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor 2ak/p\rfloor }}

如果 a {\displaystyle a} 是奇数,同时考虑勒让德符号的性质 ( a p ) ( b p ) = ( a b p ) {\displaystyle \left({\frac {a}{p}}\right)\left({\frac {b}{p}}\right)=\left({\frac {ab}{p}}\right)} ,可知 ( a p ) ( 2 p ) = ( 2 a + 2 p p ) = ( 4 ( a + p 2 ) p ) = ( 1 ) k = 1 ( p 1 ) / 2 2 ( a + p 2 ) k p = ( 1 ) k = 1 ( p 1 ) / 2 a k p ( 1 ) k = 1 ( p 1 ) / 2 k = ( 1 ) k = 1 ( p 1 ) / 2 a k p ( 1 ) p 2 1 8 {\displaystyle \left({\frac {a}{p}}\right)\left({\frac {2}{p}}\right)=\left({\frac {2a+2p}{p}}\right)=\left({\frac {4\left({\frac {a+p}{2}}\right)}{p}}\right)=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {2\left({\frac {a+p}{2}}\right)k}{p}}\rfloor }=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {ak}{p}}\rfloor }(-1)^{\sum _{k=1}^{(p-1)/2}k}=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {ak}{p}}\rfloor }(-1)^{\frac {p^{2}-1}{8}}} ,其中最后一步利用了等差数列的求和公式。

但是,当 a = 1 {\displaystyle a=1} 时,由上式可得 ( 2 p ) = ( 1 p ) ( 2 p ) = ( 1 ) k = 1 ( p 1 ) / 2 k p ( 1 ) p 2 1 8 = ( 1 ) p 2 1 8 {\displaystyle \left({\frac {2}{p}}\right)=\left({\frac {1}{p}}\right)\left({\frac {2}{p}}\right)=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {k}{p}}\rfloor }(-1)^{\frac {p^{2}-1}{8}}=(-1)^{\frac {p^{2}-1}{8}}} ,所以 ( a p ) = ( 1 ) k = 1 ( p 1 ) / 2 a k p {\displaystyle \left({\frac {a}{p}}\right)=(-1)^{\sum _{k=1}^{(p-1)/2}\lfloor {\frac {ak}{p}}\rfloor }}

相关

  • 竞争性拮抗剂竞争性拮抗剂(英语:Competitive antagonist)是一种受体拮抗剂键结到受体后但并不活化受体。拮抗剂会跟促效剂(agonist)竞争同受体上的结合位点(binding sites)。强效的拮抗剂会
  • Y染色体亚当Y染色体亚当(Y-chromosomal Adam),或称Y-MRCA,在遗传学上,由人类Y染色体DNA单倍型类群推测出的所有现存男性在父系上的最近共同祖先,从他遗传Y染色体。Y染色体亚当相对于线粒体夏
  • 幻数幻数(英语:Magic Number),又称魔数,是指原子核中质子数和中子数的某个特定数值。当质子数或中子数为幻数,或者二者取值均为幻数时,原子核会显示出较高的稳定性。目前已经确认的幻数
  • 保罗一世保罗一世·彼得罗维奇(1754年10月31日-1801年3月23日),1796年—1801年在位,是俄罗斯帝国皇帝,称号保罗一世,他42岁登基,仅在位5年。保罗一世的父亲是彼得三世,母亲是叶卡捷琳娜二世。
  • 陈宜瑜陈宜瑜(1944年4月22日-),籍贯福建仙游人,中国鱼类学家,曾任中华人民共和国国家自然科学基金委员会主任等职务。陈宜瑜1944年出生于福建仙游县鲤城镇十字街竹椅巷。1964年8月,毕业于
  • 谱斑谱斑是太阳色球上明亮的区域,通常都在色球上靠近太阳黑子的附近被发现,出自法语单词beach。谱斑地区直接映射到下方光球的光斑,但是后者有很多尺度较小的空间,因此谱斑最常出现
  • 身体形象身体意象是指一个人心目中对自己身体的美学。所有时代的人类社会对人体美学寄予了很大的价值,但一个人对自己身体的认知可能不符合社会的标准。身体意象的概念应用在许多学科
  • 大隅号大隅号是一颗在1970年2月11日时由东京大学宇宙航空研究所自鹿儿岛宇宙空间观测所使用L-4S型火箭五号机发射升空的人造卫星大隅五号,也是日本最初的人造卫星。名称取自于发射
  • 儿歌金曲颁奖典礼2000年度儿歌金曲颁奖典礼于2000年8月27日举行。这次颁奖礼改了新的形式,没有颁发十大儿歌奖项。主题:快乐岛司仪︰沈殿霞、钱嘉乐、刘慧蕴儿童节大使︰黄日华、原子鏸、盖世宝、
  • 奇帕瓦战役奇帕瓦战役(Battle of Chippawa。"Chippawa"又译“齐巴华”、“齐佩瓦”不等)是1812年战争中的其中一场美军与英军间的战役,发生于1814年7月5日的加拿大安大略。该战役是美军对