最速降线

✍ dations ◷ 2025-09-18 11:10:55 #最速降线
最速降线问题,又称最短时间问题、最速落径问题,是探讨在重力作用而忽略摩擦力的情况下,一个质点在一点A以速率为零开始,沿某条曲线,去到一点不高于A的B,该以何种曲线行进才能令所需的时间最短。在部分欧洲语言中,这个问题称为Brachistochrone,即希腊语中的“最短”(brochistos)和“时间”(chronos)。这条线段就是摆线,可以用变分学证明。1638年,伽利略在《论两种新科学》中以为此线是圆弧。约翰·伯努利参考之前分析过的等时降落轨迹,证明了此线是摆线,并在1696年6月的《博学通报》发表。艾萨克·牛顿、雅各布·伯努利、莱布尼兹和洛必达都得出同一结论,即正确的答案应该是摆线的一段。除了洛必达的解外,其他人的解都在1697年5月的《博学通报》出现。费马原理说明,两点间光线传播的路径是所需时间最少的路径。约翰·伯努利利用该原理,对此问题进行解决。运用机械能守恒定律,可以导出在恒定重力场中运动的物体的速度满足式中y表示物体在竖直方向上下落的距离,g为重力加速度。通过机械能守恒可知,经不同的曲线下落,物体的速度与水平方向的位移无关。 通过假设光在光速v在满足: v = 2 g y {displaystyle v={sqrt {2gy}}} 的介质中运动形成的轨迹来导出最速降线。 约翰·伯努利注意到,根据折射定律,一束光在密度不均的介质中传播时存在一常数式中vm为常数(可认为为真空中光速c,θ为轨迹与竖直方向的夹角,dx为水平方向路径微分,ds为运动方向路径微分。通过上述方程,我们可以得到两条结论:为了简化过程,我们假设质点(或光束)相对于原点(0,0)有坐标(x,y),且当下落了竖直距离D后达到了最大速度,则整理折射定律式中的各项并平方得到可以解得dx对dy有代入v和vm的表达式得到这是一个由直径为D的圆所形成的倒过来的摆线的微分方程。约翰的哥哥雅各布·伯努利说明了如何从二阶微分得到最短时间的情况。一种现代版本的证明如下。 如果我们从最短时间路径发生微小移动,那么形成三角形满足dy不变求微分,得到最后整理得到最后的部分即二阶微分下距离的改变量与给定的时间的关系。现在考虑下图中的两条相邻路径,中间的水平间隔为d2x。对新旧两条路径,改变量为对于最短时间的路径,两个时间相等,故得到因此最短时间的情况为在垂直平面上,自原点 ( 0 , 0 ) {displaystyle left(,0,,0right)} 至目的地 ( x 1 , y 1 ) {displaystyle left(,x_{1},,y_{1}right)} 的最速降线具有以下数学形式:这里的 y {displaystyle y} 座标轴方向向下,且 y 1 ≥ 0 {displaystyle y_{1}geq 0} ; θ {displaystyle theta } 为此摆线参数表达式的参数,原点处 θ = 0 {displaystyle theta =0} 。物体自原点沿最速降线滑至 θ = θ 1 {displaystyle theta =theta _{1}} 处所需的时间可由以下积分式给出:利用 d s = d x 2 + d y 2 {displaystyle ds={sqrt {mathrm {d} x^{2}+mathrm {d} y^{2}}}} 以及 v = 2 g y {displaystyle v={sqrt {2gy}}} ,并以 θ {displaystyle theta } 作为参数,整理后得自此摆线的参数式中易知 y {displaystyle y} 的最大值为 k 2 {displaystyle k^{2}} ,此值必须等于摆线的绕转圆直径 2 r {displaystyle 2r} ,因此现假设终点与原点直线距离   l   {displaystyle l } ,且终点对原点的俯角为 ϕ {displaystyle phi } 。利用此摆线的参数式,可知利用 l {displaystyle l} 的关系式求出 r {displaystyle r} ,并代回下滑时间中,得综合上述,讨论在   l   {displaystyle l } 已知的情况下,下滑时间 t {displaystyle t} 与俯角 ϕ {displaystyle phi } 的关系为

相关

  • 血管紧张素转化酶抑制剂血管紧张肽I转化酶抑制剂(英语:ACE inhibitor,简称为ACEI)是一类抗高血压药。血管紧张素转化酶(ACE)是肾素-血管紧张素-醛固酮(RAA)系统中的一个重要环节,该系统对血压的调节有着及其
  • 半导体材料半导体材料是导电能力介于导体和绝缘体之间的一类固体材料。以原料分为:
  • 卢森堡宫卢森堡宫 (法语:Palais du Luxembourg,发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000",
  • 血管升压素1jk4, 1jk6, 1npo, 2bn2· signal transducer activity · receptor binding · neuropeptide hormone activity · neurohypophyseal hormone activity · V1A vasopre
  • 大羊驼大羊驼(学名:Lama glama),又名家羊驼,是南美洲的骆驼科,和多种相似动物合称为骆马或美洲驼。在印加帝国及其他安地斯山脉地区是原住民广泛蓄养的动物。在南美洲,大羊驼是用来背负重
  • 省辖市市徽台北市(俗字写作台北市;台湾话: Tâi-pak-chhī;客家话: Thòi-pet-sṳ)为中华民国台湾省1945年至1967年间下辖的省辖市。1945年二次大战结束后,日治时期隶属于台北州的台北市
  • 扫罗王扫罗(新教)/撒乌耳(旧教)(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram
  • 杨显东杨显东(1902年11月23日-1998年10月20日),湖北沔阳人,中国棉花专家、农学家、农业行政管理专家、社会活动家。1923年考人南京金陵大学农科,主攻棉花和蚕桑专业。1927年夏毕业后,在河
  • 阿迪格人阿迪格语属高加索语系阿布哈兹—阿迪格语族,亦称下切尔克斯语、卡赫语,使用俄文字母的文字。欧洲和东方的文献自中世纪起称他们为切尔克斯人。现代阿迪格人、卡巴尔达人和切尔
  • 88毫米高射炮8.8厘米18/36/37/41年式防空炮(德语:8.8cm-FlaK 18/36/37/41)是二战中最广为人知的火炮之一。所谓的8.8厘米炮其实是一个系列,官方称为8.8 cm Flak 18/36/37,有时也包括了一些更