首页 >
最速降线
✍ dations ◷ 2025-06-28 14:49:28 #最速降线
最速降线问题,又称最短时间问题、最速落径问题,是探讨在重力作用而忽略摩擦力的情况下,一个质点在一点A以速率为零开始,沿某条曲线,去到一点不高于A的B,该以何种曲线行进才能令所需的时间最短。在部分欧洲语言中,这个问题称为Brachistochrone,即希腊语中的“最短”(brochistos)和“时间”(chronos)。这条线段就是摆线,可以用变分学证明。1638年,伽利略在《论两种新科学》中以为此线是圆弧。约翰·伯努利参考之前分析过的等时降落轨迹,证明了此线是摆线,并在1696年6月的《博学通报》发表。艾萨克·牛顿、雅各布·伯努利、莱布尼兹和洛必达都得出同一结论,即正确的答案应该是摆线的一段。除了洛必达的解外,其他人的解都在1697年5月的《博学通报》出现。费马原理说明,两点间光线传播的路径是所需时间最少的路径。约翰·伯努利利用该原理,对此问题进行解决。运用机械能守恒定律,可以导出在恒定重力场中运动的物体的速度满足式中y表示物体在竖直方向上下落的距离,g为重力加速度。通过机械能守恒可知,经不同的曲线下落,物体的速度与水平方向的位移无关。
通过假设光在光速v在满足:
v
=
2
g
y
{displaystyle v={sqrt {2gy}}}
的介质中运动形成的轨迹来导出最速降线。
约翰·伯努利注意到,根据折射定律,一束光在密度不均的介质中传播时存在一常数式中vm为常数(可认为为真空中光速c,θ为轨迹与竖直方向的夹角,dx为水平方向路径微分,ds为运动方向路径微分。通过上述方程,我们可以得到两条结论:为了简化过程,我们假设质点(或光束)相对于原点(0,0)有坐标(x,y),且当下落了竖直距离D后达到了最大速度,则整理折射定律式中的各项并平方得到可以解得dx对dy有代入v和vm的表达式得到这是一个由直径为D的圆所形成的倒过来的摆线的微分方程。约翰的哥哥雅各布·伯努利说明了如何从二阶微分得到最短时间的情况。一种现代版本的证明如下。
如果我们从最短时间路径发生微小移动,那么形成三角形满足dy不变求微分,得到最后整理得到最后的部分即二阶微分下距离的改变量与给定的时间的关系。现在考虑下图中的两条相邻路径,中间的水平间隔为d2x。对新旧两条路径,改变量为对于最短时间的路径,两个时间相等,故得到因此最短时间的情况为在垂直平面上,自原点
(
0
,
0
)
{displaystyle left(,0,,0right)}
至目的地
(
x
1
,
y
1
)
{displaystyle left(,x_{1},,y_{1}right)}
的最速降线具有以下数学形式:这里的
y
{displaystyle y}
座标轴方向向下,且
y
1
≥
0
{displaystyle y_{1}geq 0}
;
θ
{displaystyle theta }
为此摆线参数表达式的参数,原点处
θ
=
0
{displaystyle theta =0}
。物体自原点沿最速降线滑至
θ
=
θ
1
{displaystyle theta =theta _{1}}
处所需的时间可由以下积分式给出:利用
d
s
=
d
x
2
+
d
y
2
{displaystyle ds={sqrt {mathrm {d} x^{2}+mathrm {d} y^{2}}}}
以及
v
=
2
g
y
{displaystyle v={sqrt {2gy}}}
,并以
θ
{displaystyle theta }
作为参数,整理后得自此摆线的参数式中易知
y
{displaystyle y}
的最大值为
k
2
{displaystyle k^{2}}
,此值必须等于摆线的绕转圆直径
2
r
{displaystyle 2r}
,因此现假设终点与原点直线距离
l
{displaystyle l }
,且终点对原点的俯角为
ϕ
{displaystyle phi }
。利用此摆线的参数式,可知利用
l
{displaystyle l}
的关系式求出
r
{displaystyle r}
,并代回下滑时间中,得综合上述,讨论在
l
{displaystyle l }
已知的情况下,下滑时间
t
{displaystyle t}
与俯角
ϕ
{displaystyle phi }
的关系为
相关
- 钙的同位素钙(原子量:40.078(4))共有24个同位素,其中有3个是稳定的。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。
- 可兰经《古兰经》(阿拉伯语:اَلْقُرآن,al-qurʾān,字面上解作“诵读”)是伊斯兰教中最重要的经典。伊斯兰教信徒(穆斯林)相信《古兰经》是真主安拉的启示,它被广泛认为是最优
- 血管外膜血管的外膜(Tunica adventita/Tunica externa)是指包在血管最外的一层疏松结缔组织组成的膜,其主要功能是为血管壁的细胞提供养分(Loose Connective Tissue),另外,血管受损时,外膜中
- 微处理器印刷电路板通过:微处理器(英语:Microprocessor,缩写:µP或uP)是可编程特殊集成电路。一种处理器,其所有组件小型化至一块或数块集成电路内。一种集成电路,可在其一端或多端接受编码
- 合作金库银行合作金库商业银行(金融机构代号:006),简称合作金库或合库,为合作金库金融控股旗下的主要子公司,是台湾大型商业银行及传统八大公股行库之一,其官股比例仅次于台湾银行、台湾土地银
- 子宫乳头状浆液性癌子宫浆液性癌(英语:Uterine serous carcinoma, USC),也称子宫乳头状浆液性癌(uterine papillary serous carcinoma, UPSC),子宫浆液性腺癌(uterine serous adenocarcinoma),是指一类非
- 热带地区热带,(英语:Tropics)的广义是指地球上南、北回归线(南、北纬23度26分)之间的地区的总称,但在气候方面一般会进一步区分出赤道热带和亚热带,无极昼极夜现象。热带有时从气候上定义,指
- 缪塞阿尔弗雷德·德·缪塞(法语:Alfred de Musset,全名:Alfred Louis Charles de Musset-Pathay,1810年12月11日-1857年5月2日)是法国贵族、剧作家、诗人、小说作家。阿尔弗雷德·德·
- 黏胶层黏胶层(Mucigel)是覆盖在植物根冠富含黏性的一种物质。根冠最外层的细胞会分泌有丰富的碳水化合物,如果胶,其中高基氏体是产生黏胶层的胞器,细胞透过胞吐作用。在高微生物的土壤
- 琐诺木杜凌索诺木杜棱(?-1644年),清朝蒙古敖汉部人,博尔济吉特氏。图鲁博罗特玄孙,纳密克曾孙,贝玛土谢图之孙,岱青杜楞之子。1627年,归附后金,赐号济农,皇太极把姐姐莽古济嫁给他。1628年,随征察哈