最速降线

✍ dations ◷ 2025-11-26 00:51:07 #最速降线
最速降线问题,又称最短时间问题、最速落径问题,是探讨在重力作用而忽略摩擦力的情况下,一个质点在一点A以速率为零开始,沿某条曲线,去到一点不高于A的B,该以何种曲线行进才能令所需的时间最短。在部分欧洲语言中,这个问题称为Brachistochrone,即希腊语中的“最短”(brochistos)和“时间”(chronos)。这条线段就是摆线,可以用变分学证明。1638年,伽利略在《论两种新科学》中以为此线是圆弧。约翰·伯努利参考之前分析过的等时降落轨迹,证明了此线是摆线,并在1696年6月的《博学通报》发表。艾萨克·牛顿、雅各布·伯努利、莱布尼兹和洛必达都得出同一结论,即正确的答案应该是摆线的一段。除了洛必达的解外,其他人的解都在1697年5月的《博学通报》出现。费马原理说明,两点间光线传播的路径是所需时间最少的路径。约翰·伯努利利用该原理,对此问题进行解决。运用机械能守恒定律,可以导出在恒定重力场中运动的物体的速度满足式中y表示物体在竖直方向上下落的距离,g为重力加速度。通过机械能守恒可知,经不同的曲线下落,物体的速度与水平方向的位移无关。 通过假设光在光速v在满足: v = 2 g y {displaystyle v={sqrt {2gy}}} 的介质中运动形成的轨迹来导出最速降线。 约翰·伯努利注意到,根据折射定律,一束光在密度不均的介质中传播时存在一常数式中vm为常数(可认为为真空中光速c,θ为轨迹与竖直方向的夹角,dx为水平方向路径微分,ds为运动方向路径微分。通过上述方程,我们可以得到两条结论:为了简化过程,我们假设质点(或光束)相对于原点(0,0)有坐标(x,y),且当下落了竖直距离D后达到了最大速度,则整理折射定律式中的各项并平方得到可以解得dx对dy有代入v和vm的表达式得到这是一个由直径为D的圆所形成的倒过来的摆线的微分方程。约翰的哥哥雅各布·伯努利说明了如何从二阶微分得到最短时间的情况。一种现代版本的证明如下。 如果我们从最短时间路径发生微小移动,那么形成三角形满足dy不变求微分,得到最后整理得到最后的部分即二阶微分下距离的改变量与给定的时间的关系。现在考虑下图中的两条相邻路径,中间的水平间隔为d2x。对新旧两条路径,改变量为对于最短时间的路径,两个时间相等,故得到因此最短时间的情况为在垂直平面上,自原点 ( 0 , 0 ) {displaystyle left(,0,,0right)} 至目的地 ( x 1 , y 1 ) {displaystyle left(,x_{1},,y_{1}right)} 的最速降线具有以下数学形式:这里的 y {displaystyle y} 座标轴方向向下,且 y 1 ≥ 0 {displaystyle y_{1}geq 0} ; θ {displaystyle theta } 为此摆线参数表达式的参数,原点处 θ = 0 {displaystyle theta =0} 。物体自原点沿最速降线滑至 θ = θ 1 {displaystyle theta =theta _{1}} 处所需的时间可由以下积分式给出:利用 d s = d x 2 + d y 2 {displaystyle ds={sqrt {mathrm {d} x^{2}+mathrm {d} y^{2}}}} 以及 v = 2 g y {displaystyle v={sqrt {2gy}}} ,并以 θ {displaystyle theta } 作为参数,整理后得自此摆线的参数式中易知 y {displaystyle y} 的最大值为 k 2 {displaystyle k^{2}} ,此值必须等于摆线的绕转圆直径 2 r {displaystyle 2r} ,因此现假设终点与原点直线距离   l   {displaystyle l } ,且终点对原点的俯角为 ϕ {displaystyle phi } 。利用此摆线的参数式,可知利用 l {displaystyle l} 的关系式求出 r {displaystyle r} ,并代回下滑时间中,得综合上述,讨论在   l   {displaystyle l } 已知的情况下,下滑时间 t {displaystyle t} 与俯角 ϕ {displaystyle phi } 的关系为

相关

  • 蛋白酶抑制剂蛋白酶抑制剂(英语:Protease inhibitor)是带有环状结构的肽化合物,可竞争性或非竞争性抑制蛋白酶活性,此外,蛋白酶抑制剂还可以降低白介素-1β转换酶的表达,从而使病毒颗粒无法成熟,
  • 富尔顿县富尔顿县(英语:Fulton County, Georgia),是美国佐治亚州西北部的一个县。面积1,385平方公里。根据美国2000年人口普查,人口共有816,006人。富尔顿县县治是同为佐治亚州首府的亚特
  • 法语国家及地区国际组织法语国家及地区国际组织(法语:Organisation internationale de la Francophonie,简称OIF),简称法语国家组织,也有译名为法语圈国际组织,是以法语作为第一语言、或受法国文化显著影
  • 秋千秋千 (闽南语、广东话称千秋)是靠一人或多人在游戏者的背后,推动游戏者,或自己利用绳索的前后摆荡,让游戏者的身体随秋千上下起落的一种游戏。通常两条绳索末端系一块木板、轮胎
  • 色散在光学中,色散是指一道光中,光的相速度随着频率而改变。拥有上述特性的介质,我们称为色散性介质。提到色散,通常是指电磁波(包含可见光)的性质,但此性质可以推广至任何波动,例如声
  • 食醋醋(英语:Vinegar),旧称为醯、苦酒等,是烹饪中常用的一种液体酸味调味料。醋的成分通常含有3%-5%的醋酸,有的还有少量的酒石酸、柠檬酸等。理论上讲,几乎任何含有糖分的液体都可以发
  • SMDS交换式多兆位数据服务(英语:Switched Multi-megabit Data Service,缩写SMDS)是一项1990年代早期用于连接LAN、MAN和WAN以交换数据的无连接服务。在欧洲,该服务被称为无连接宽带数
  • 真菌繁殖真菌繁殖是一种由交配型控制的复杂过程。 调查显示出真菌繁殖已经集中在几个特定不同表现的物种。 不是每个真菌都有产生性别,即使有产生也是同配生殖;而且,"雄性"和"雌性" 不
  • 巨人巨人,是神话或传说或童话中常见的生物,几乎全世界的都有他们的踪迹,由希腊神话、印欧语系神话,到中东、亚洲及美洲地区的神话及圣经内的故事都有他们的痕迹。而现在的社会中,巨人
  • 桑德里娜·博内尔桑德琳·波奈儿(法语:Sandrine Bonnaire,1967年5月31日-)是法国著名电影演员,她曾以电影《没有屋顶,也没有法律》(Sans toit ni loi)获得1986年法国凯撒奖最佳女主角奖。桑德琳·波奈