最速降线

✍ dations ◷ 2025-01-23 03:06:35 #最速降线
最速降线问题,又称最短时间问题、最速落径问题,是探讨在重力作用而忽略摩擦力的情况下,一个质点在一点A以速率为零开始,沿某条曲线,去到一点不高于A的B,该以何种曲线行进才能令所需的时间最短。在部分欧洲语言中,这个问题称为Brachistochrone,即希腊语中的“最短”(brochistos)和“时间”(chronos)。这条线段就是摆线,可以用变分学证明。1638年,伽利略在《论两种新科学》中以为此线是圆弧。约翰·伯努利参考之前分析过的等时降落轨迹,证明了此线是摆线,并在1696年6月的《博学通报》发表。艾萨克·牛顿、雅各布·伯努利、莱布尼兹和洛必达都得出同一结论,即正确的答案应该是摆线的一段。除了洛必达的解外,其他人的解都在1697年5月的《博学通报》出现。费马原理说明,两点间光线传播的路径是所需时间最少的路径。约翰·伯努利利用该原理,对此问题进行解决。运用机械能守恒定律,可以导出在恒定重力场中运动的物体的速度满足式中y表示物体在竖直方向上下落的距离,g为重力加速度。通过机械能守恒可知,经不同的曲线下落,物体的速度与水平方向的位移无关。 通过假设光在光速v在满足: v = 2 g y {displaystyle v={sqrt {2gy}}} 的介质中运动形成的轨迹来导出最速降线。 约翰·伯努利注意到,根据折射定律,一束光在密度不均的介质中传播时存在一常数式中vm为常数(可认为为真空中光速c,θ为轨迹与竖直方向的夹角,dx为水平方向路径微分,ds为运动方向路径微分。通过上述方程,我们可以得到两条结论:为了简化过程,我们假设质点(或光束)相对于原点(0,0)有坐标(x,y),且当下落了竖直距离D后达到了最大速度,则整理折射定律式中的各项并平方得到可以解得dx对dy有代入v和vm的表达式得到这是一个由直径为D的圆所形成的倒过来的摆线的微分方程。约翰的哥哥雅各布·伯努利说明了如何从二阶微分得到最短时间的情况。一种现代版本的证明如下。 如果我们从最短时间路径发生微小移动,那么形成三角形满足dy不变求微分,得到最后整理得到最后的部分即二阶微分下距离的改变量与给定的时间的关系。现在考虑下图中的两条相邻路径,中间的水平间隔为d2x。对新旧两条路径,改变量为对于最短时间的路径,两个时间相等,故得到因此最短时间的情况为在垂直平面上,自原点 ( 0 , 0 ) {displaystyle left(,0,,0right)} 至目的地 ( x 1 , y 1 ) {displaystyle left(,x_{1},,y_{1}right)} 的最速降线具有以下数学形式:这里的 y {displaystyle y} 座标轴方向向下,且 y 1 ≥ 0 {displaystyle y_{1}geq 0} ; θ {displaystyle theta } 为此摆线参数表达式的参数,原点处 θ = 0 {displaystyle theta =0} 。物体自原点沿最速降线滑至 θ = θ 1 {displaystyle theta =theta _{1}} 处所需的时间可由以下积分式给出:利用 d s = d x 2 + d y 2 {displaystyle ds={sqrt {mathrm {d} x^{2}+mathrm {d} y^{2}}}} 以及 v = 2 g y {displaystyle v={sqrt {2gy}}} ,并以 θ {displaystyle theta } 作为参数,整理后得自此摆线的参数式中易知 y {displaystyle y} 的最大值为 k 2 {displaystyle k^{2}} ,此值必须等于摆线的绕转圆直径 2 r {displaystyle 2r} ,因此现假设终点与原点直线距离   l   {displaystyle l } ,且终点对原点的俯角为 ϕ {displaystyle phi } 。利用此摆线的参数式,可知利用 l {displaystyle l} 的关系式求出 r {displaystyle r} ,并代回下滑时间中,得综合上述,讨论在   l   {displaystyle l } 已知的情况下,下滑时间 t {displaystyle t} 与俯角 ϕ {displaystyle phi } 的关系为

相关

  • 托马斯·里德托马斯·里德(英文:Thomas Reid,1710年4月26日-1796年10月7日)是18世纪苏格兰启蒙运动时期哲学家,苏格兰常识学派的创始人。里德开始任教于亚伯丁大学,后到格拉斯哥大学接任亚当·
  • 拉雪兹神父公墓拉雪兹神父公墓(法语:Cimetière du Père-Lachaise,官方名称:cimetière de l'Est,意指“东公墓”)是法国巴黎市区内最大的墓地,位于巴黎第20区,面积超过43万平方米。它是巴黎第一
  • 飞行距离此条目列出以未重新加油为前提的飞行距离纪录,其中某些纪录是由国际航空联合会所认可。航空史 · 飞行器(制造商) · 飞行器发动机(制造商) · 旋翼机(制造商) · 机场 · 航线 ·
  • 蜚蠊科蜚蠊科(学名:Blattidae)蜚蠊目蜚蠊总科底下的一科,居家常见的大型蟑螂多属于此科。。根据生命目录,本科包括有物种652种,大致可以分为四个亚科、约40个属。以下为这些物种所属的属
  • 凤山厅凤山厅为台湾日治时期行政区划,设立于1901年,其原为恒春厅下的凤山弁务署所管辖的范围;1909年10月,凤山厅并入台南厅。凤山厅的前身为于1897年6月设置的凤山县大湖、阿公店、打
  • 沃东加沃东加(Wodonga)是澳大利亚维多利亚州东北部的一座小城市,距离维州首府墨尔本约300公里。沃东加在墨累河畔,与隔河相望的新南威尔士州城市奥尔伯里为双子城市。2006年人口29,710
  • 危机热线危机热线是一种电话或网络咨询服务,主要对存在情感问题或有计划自杀的人提供咨询。危机热线的有效性曾遭受批评:没有明显证据能证明危机热线能有效降低自杀率且对已经决定自杀
  • 玛莉·居礼玛丽亚·斯克沃多夫斯卡-居里(波兰语:Maria Skłodowska-Curie,1867年11月7日-1934年7月4日),通常称为玛丽·居里(法语:Marie Curie)或居里夫人(Madame Curie),波兰裔法国籍物理学家、化
  • 白铜白铜(拉丁化:Paktong,英语:Cupronickel),又称铜镍合金,是以镍为主要元素的铜镍锌合金,颜色为银白色,具有银色的外观但不包含银的元素,一般的成分是60%的铜、20%的镍和20%的锌。镍含量大约
  • 朝韩首脑会晤朝韩首脑会晤是位于朝鲜半岛的朝鲜民主主义人民共和国和大韩民国两国领导人举行的会晤,至2018年9月举行过五次;2000年与2007年于平壤百花园国宾馆举行,由金正日分别与金大中和