首页 >
最速降线
✍ dations ◷ 2025-04-03 08:05:35 #最速降线
最速降线问题,又称最短时间问题、最速落径问题,是探讨在重力作用而忽略摩擦力的情况下,一个质点在一点A以速率为零开始,沿某条曲线,去到一点不高于A的B,该以何种曲线行进才能令所需的时间最短。在部分欧洲语言中,这个问题称为Brachistochrone,即希腊语中的“最短”(brochistos)和“时间”(chronos)。这条线段就是摆线,可以用变分学证明。1638年,伽利略在《论两种新科学》中以为此线是圆弧。约翰·伯努利参考之前分析过的等时降落轨迹,证明了此线是摆线,并在1696年6月的《博学通报》发表。艾萨克·牛顿、雅各布·伯努利、莱布尼兹和洛必达都得出同一结论,即正确的答案应该是摆线的一段。除了洛必达的解外,其他人的解都在1697年5月的《博学通报》出现。费马原理说明,两点间光线传播的路径是所需时间最少的路径。约翰·伯努利利用该原理,对此问题进行解决。运用机械能守恒定律,可以导出在恒定重力场中运动的物体的速度满足式中y表示物体在竖直方向上下落的距离,g为重力加速度。通过机械能守恒可知,经不同的曲线下落,物体的速度与水平方向的位移无关。
通过假设光在光速v在满足:
v
=
2
g
y
{displaystyle v={sqrt {2gy}}}
的介质中运动形成的轨迹来导出最速降线。
约翰·伯努利注意到,根据折射定律,一束光在密度不均的介质中传播时存在一常数式中vm为常数(可认为为真空中光速c,θ为轨迹与竖直方向的夹角,dx为水平方向路径微分,ds为运动方向路径微分。通过上述方程,我们可以得到两条结论:为了简化过程,我们假设质点(或光束)相对于原点(0,0)有坐标(x,y),且当下落了竖直距离D后达到了最大速度,则整理折射定律式中的各项并平方得到可以解得dx对dy有代入v和vm的表达式得到这是一个由直径为D的圆所形成的倒过来的摆线的微分方程。约翰的哥哥雅各布·伯努利说明了如何从二阶微分得到最短时间的情况。一种现代版本的证明如下。
如果我们从最短时间路径发生微小移动,那么形成三角形满足dy不变求微分,得到最后整理得到最后的部分即二阶微分下距离的改变量与给定的时间的关系。现在考虑下图中的两条相邻路径,中间的水平间隔为d2x。对新旧两条路径,改变量为对于最短时间的路径,两个时间相等,故得到因此最短时间的情况为在垂直平面上,自原点
(
0
,
0
)
{displaystyle left(,0,,0right)}
至目的地
(
x
1
,
y
1
)
{displaystyle left(,x_{1},,y_{1}right)}
的最速降线具有以下数学形式:这里的
y
{displaystyle y}
座标轴方向向下,且
y
1
≥
0
{displaystyle y_{1}geq 0}
;
θ
{displaystyle theta }
为此摆线参数表达式的参数,原点处
θ
=
0
{displaystyle theta =0}
。物体自原点沿最速降线滑至
θ
=
θ
1
{displaystyle theta =theta _{1}}
处所需的时间可由以下积分式给出:利用
d
s
=
d
x
2
+
d
y
2
{displaystyle ds={sqrt {mathrm {d} x^{2}+mathrm {d} y^{2}}}}
以及
v
=
2
g
y
{displaystyle v={sqrt {2gy}}}
,并以
θ
{displaystyle theta }
作为参数,整理后得自此摆线的参数式中易知
y
{displaystyle y}
的最大值为
k
2
{displaystyle k^{2}}
,此值必须等于摆线的绕转圆直径
2
r
{displaystyle 2r}
,因此现假设终点与原点直线距离
l
{displaystyle l }
,且终点对原点的俯角为
ϕ
{displaystyle phi }
。利用此摆线的参数式,可知利用
l
{displaystyle l}
的关系式求出
r
{displaystyle r}
,并代回下滑时间中,得综合上述,讨论在
l
{displaystyle l }
已知的情况下,下滑时间
t
{displaystyle t}
与俯角
ϕ
{displaystyle phi }
的关系为
相关
- 肺肺是很多进行空气呼吸的动物的呼吸系统中重要的一个器官,大部分四足类动物、一些鱼类和蜗牛都有肺。哺乳动物和其他身体结构较为复杂的动物则拥有两个肺,其位于胸腔中靠近脊柱
- 岩藻糖岩藻糖(英文:Fucose),即6-去氧-L-半乳糖,又名鹿角藻糖,是一种化学式为C6H12O5的脱氧六碳糖,称其为脱氧糖的原因是是若将半乳糖六号碳上的羟基去氧,就是岩藻糖。存在于哺乳动物、植物
- 抗组胺药抗组胺药(法语:Antihistaminique,英语:Antihistamine,德语:Antihistaminikum),通常指H1-受体拮抗剂,是一种,透过对体内H1-受体(组胺受体之一种)的作用,减少组胺对这些受体产生效应,从而减
- 幽门管幽门(pylorus)是胃和十二指肠的连接口,包含幽门窦(pyloric antrum)和幽门管(pyloric canal)两个部分。幽门括约肌(pyloric sphincter)在幽门管末端,可以控制食物从胃进入十二指肠的过
- 放射性碳定年法放射性碳定年法(英语:Radiocarbon dating),又称碳测年(carbon dating)、碳十四定年法或碳十四年代测定法(carbon-14 dating),是利用自然存在的碳-14同位素的放射性定年法,用以确定原先
- 私立学校私立学校或称民办学校,一般指非由地方政府或者中央政府管理,全部或者部分的经费依靠学生的学费来维持学校经营而非公共资金,且校方有权自主选择生源的学校,与私立学校相对应的为
- 胆烷酸熊去氧胆酸(英语:Ursodeoxycholic acid,也被称为3α,7β-二羟基-5β-胆烷-24-羧酸,3α,7β-dihydroxy-5β-cholan-24-oic acid,缩写 UDCA),是一种来自熊胆的胆汁酸,为次级胆汁酸,由初
- 行政权行政机关,又称行政机构、行政部门,其工作是对组织进行日常的管理并施行法律政策等相关活动,是三权分立中的其中一部分。广义上,行政定义为负责国家政策的执行的政府机构。狭义上
- 中钢中国钢铁公司(简称中钢)是台湾最大的钢铁企业,为十大建设的重要项目之一,由中华民国政府出资成立,现为民营企业。其中钢集团总部大楼位于高雄市前镇区成功二路88号,总公司与主要工
- 九如乡坐标:22°44′24″N 120°29′25″E / 22.7399991°N 120.4901405°E / 22.7399991; 120.4901405九如乡(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,Bli