最速降线

✍ dations ◷ 2025-04-04 06:33:16 #最速降线
最速降线问题,又称最短时间问题、最速落径问题,是探讨在重力作用而忽略摩擦力的情况下,一个质点在一点A以速率为零开始,沿某条曲线,去到一点不高于A的B,该以何种曲线行进才能令所需的时间最短。在部分欧洲语言中,这个问题称为Brachistochrone,即希腊语中的“最短”(brochistos)和“时间”(chronos)。这条线段就是摆线,可以用变分学证明。1638年,伽利略在《论两种新科学》中以为此线是圆弧。约翰·伯努利参考之前分析过的等时降落轨迹,证明了此线是摆线,并在1696年6月的《博学通报》发表。艾萨克·牛顿、雅各布·伯努利、莱布尼兹和洛必达都得出同一结论,即正确的答案应该是摆线的一段。除了洛必达的解外,其他人的解都在1697年5月的《博学通报》出现。费马原理说明,两点间光线传播的路径是所需时间最少的路径。约翰·伯努利利用该原理,对此问题进行解决。运用机械能守恒定律,可以导出在恒定重力场中运动的物体的速度满足式中y表示物体在竖直方向上下落的距离,g为重力加速度。通过机械能守恒可知,经不同的曲线下落,物体的速度与水平方向的位移无关。 通过假设光在光速v在满足: v = 2 g y {displaystyle v={sqrt {2gy}}} 的介质中运动形成的轨迹来导出最速降线。 约翰·伯努利注意到,根据折射定律,一束光在密度不均的介质中传播时存在一常数式中vm为常数(可认为为真空中光速c,θ为轨迹与竖直方向的夹角,dx为水平方向路径微分,ds为运动方向路径微分。通过上述方程,我们可以得到两条结论:为了简化过程,我们假设质点(或光束)相对于原点(0,0)有坐标(x,y),且当下落了竖直距离D后达到了最大速度,则整理折射定律式中的各项并平方得到可以解得dx对dy有代入v和vm的表达式得到这是一个由直径为D的圆所形成的倒过来的摆线的微分方程。约翰的哥哥雅各布·伯努利说明了如何从二阶微分得到最短时间的情况。一种现代版本的证明如下。 如果我们从最短时间路径发生微小移动,那么形成三角形满足dy不变求微分,得到最后整理得到最后的部分即二阶微分下距离的改变量与给定的时间的关系。现在考虑下图中的两条相邻路径,中间的水平间隔为d2x。对新旧两条路径,改变量为对于最短时间的路径,两个时间相等,故得到因此最短时间的情况为在垂直平面上,自原点 ( 0 , 0 ) {displaystyle left(,0,,0right)} 至目的地 ( x 1 , y 1 ) {displaystyle left(,x_{1},,y_{1}right)} 的最速降线具有以下数学形式:这里的 y {displaystyle y} 座标轴方向向下,且 y 1 ≥ 0 {displaystyle y_{1}geq 0} ; θ {displaystyle theta } 为此摆线参数表达式的参数,原点处 θ = 0 {displaystyle theta =0} 。物体自原点沿最速降线滑至 θ = θ 1 {displaystyle theta =theta _{1}} 处所需的时间可由以下积分式给出:利用 d s = d x 2 + d y 2 {displaystyle ds={sqrt {mathrm {d} x^{2}+mathrm {d} y^{2}}}} 以及 v = 2 g y {displaystyle v={sqrt {2gy}}} ,并以 θ {displaystyle theta } 作为参数,整理后得自此摆线的参数式中易知 y {displaystyle y} 的最大值为 k 2 {displaystyle k^{2}} ,此值必须等于摆线的绕转圆直径 2 r {displaystyle 2r} ,因此现假设终点与原点直线距离   l   {displaystyle l } ,且终点对原点的俯角为 ϕ {displaystyle phi } 。利用此摆线的参数式,可知利用 l {displaystyle l} 的关系式求出 r {displaystyle r} ,并代回下滑时间中,得综合上述,讨论在   l   {displaystyle l } 已知的情况下,下滑时间 t {displaystyle t} 与俯角 ϕ {displaystyle phi } 的关系为

相关

  • 工程制图工程制图可以指:
  • 进化计算进化计算是遗传算法、进化策略(英语:Evolution strategy)、进化规划(英语:Evolutionary programming)的统称。进化计算起源于20世纪50年代末,成熟于20世纪80年代,目前主要被应用于控
  • 会合-舒梅克号会合-舒梅克号(Near Earth Asteroid Rendezvous - Shoemaker)是美国国家航空航天局的太空探测卫星,会合-舒梅克号这个名称则是为了纪念天文学家尤金·舒梅克(Eugene M. Shoemake
  • 割让台澎《马关条约》为大清帝国与大日本帝国于1895年4月17日(清光绪二十一年三月二十三日、日本明治二十八年)在日本山口县赤间关市(今山口县下关市)签署的条约,原名《马关新约》,又称《
  • 变速变速器(德语:Getriebe;英语:Transmission),在车辆特别是汽车常称为“变速器”、“排挡”或“波箱”,马来西亚称为“牙箱”;在工业机械常称为“变速机”,是进行机械动力转换的机械或液
  • 风景画家风景画是指主要描绘自然风景,例如山川江河等的画作。世界各地的风景画有着不同的特征,而传统上风景画主要分为西方绘画和中国绘画这两个部分,二者都有上千年的历史。在中国古代
  • 情报机构情报机构(英语:Intelligence Agency),是专司情报搜集、分析和利用工作,用以支援国家安全、军事及外交政策的政府部门。情报搜集手段分为公开或隐蔽,可能包括间谍活动、讯号拦截、
  • EdgeMicrosoft Edge(研发代号为Project Spartan,译为微软边缘浏览器或微软前沿浏览器)是一个由微软研发的浏览器,于2015年1月21日公布,2015年3月30日公开发布第一个预览版。该浏览器
  • 大陆冰川海洋性冰川(温性季风性冰川),是对中国冰川的分类,相对应的则为“大陆性冰川”。是最早由中国冰川学家、院士施雅风出的对冰川的分类方法。
  • 碎积云淡积云(学名:Cumulus fractus,缩写: Cu fra ),是积云的一种。淡积云的边缘破碎,形态不断变化,这些变化通常还非常迅速。