首页 >
贝叶斯统计
✍ dations ◷ 2025-01-23 09:31:05 #贝叶斯统计
贝叶斯定理(英语:Bayes' theorem)是概率论中的一个定理,描述在已知一些条件下,某事件的发生概率。比如,如果已知某癌症与寿命有关,使用贝叶斯定理则可以通过得知某人年龄,来更加准确地计算出他罹患癌症的概率。通常,事件A在事件B已发生的条件下发生的概率,与事件B在事件A已发生的条件下发生的概率是不一样的。然而,这两者是有确定的关系的,贝叶斯定理就是这种关系的陈述。贝叶斯公式的一个用途,即通过已知的三个概率而推出第四个概率。贝叶斯定理跟随机变量的条件概率以及边缘概率分布有关。作为一个普遍的原理,贝叶斯定理对于所有概率的解释是有效的。这一定理的主要应用为贝叶斯推断,是推论统计学中的一种推断法。这一定理名称来自于托马斯·贝叶斯。贝叶斯定理是关于随机事件A和B的条件概率的一则定理。P
(
A
∣
B
)
=
P
(
B
∣
A
)
P
(
A
)
P
(
B
)
{displaystyle P(Amid B)={frac {P(Bmid A)P(A)}{P(B)}}}其中
A
{displaystyle A}
以及
B
{displaystyle B}
为随机事件,且
P
(
B
)
{displaystyle P(B)}
不为零。
P
(
A
|
B
)
{displaystyle P(A|B)}
是指在事件
B
{displaystyle B}
发生的情况下事件
A
{displaystyle A}
发生的概率。在贝叶斯定理中,每个名词都有约定俗成的名称:按这些术语,贝叶斯定理可表述为:也就是说,后验概率与先验概率和相似度的乘积成正比。另外,比例
P
(
B
|
A
)
/
P
(
B
)
{displaystyle P(B|A)/P(B)}
也有时被称作标准似然度(standardised likelihood),贝叶斯定理可表述为:根据条件概率的定义。在事件B发生的条件下事件A发生的概率是:其中 A与B的联合概率表示为
P
(
A
∩
B
)
{displaystyle P(Acap B)}
或者
P
(
A
,
B
)
{displaystyle P(A,B)}
或者
P
(
A
B
)
{displaystyle P(AB)}
。同样地,在事件A发生的条件下事件B发生的概率整理与合并这两个方程式,我们可以得到这个引理有时称作概率乘法规则。上式两边同除以P(B),若P(B)是非零的,我们可以得到贝叶斯定理:贝叶斯定理通常可以再写成下面的形式:其中AC是A的补集(即非A)。故上式亦可写成:在更一般化的情况,假设{Ai}是事件集合里的部分集合,对于任意的Ai,贝叶斯定理可用下式表示:贝叶斯定理亦可由相似率Λ和可能性O表示:其中定义为B发生时,A发生的可能性(odds);则是A发生的可能性。相似率(Likelihood ratio)则定义为:贝叶斯定理亦可用于连续几率分布。由于概率密度函数严格上并非几率,由几率密度函数导出贝叶斯定理观念上较为困难(详细推导参阅)。贝叶斯定理与几率密度的关系是由求极限的方式建立:全几率定理则有类似的论述:如同离散的情况,公式中的每项均有名称。
f(x, y)是X和Y的联合分布;
f(x|y)是给定Y=y后,X的后验分布;
f(y|x)= L(x|y)是Y=y后,X的相似度函数(为x的函数);
f(x)和f(y)则是X和Y的边际分布;
f(x)则是X的先验分布。
为了方便起见,这里的f在这些专有名词中代表不同的函数(可以由引数的不同判断之)。对于变数有二个以上的情况,贝叶斯定理亦成立。例如:这个式子可以由套用多次二个变数的贝式定理及条件几率的定义导出:一般化的方法则是利用联合几率去分解待求的条件几率,并对不加以探讨的变数积分(意即对欲探讨的变数计算边缘几率)。取决于不同的分解形式,可以证明某些积分必为1,因此分解形式可被简化。利用这个性质,贝叶斯定理的计算量可能可以大幅下降。贝氏网络为此方法的一个例子,贝氏网络指定数个变数的联合几率分布的分解型式,该几率分布满足下述条件:当其他变数的条件几率给定时,该变数的条件几率为一简单型式。下面展示贝叶斯定理在检测吸毒者时的应用。假设一个常规的检测结果的灵敏度和特异度均为99%,即吸毒者每次检测呈阳性(+)的概率为99%。而不吸毒者每次检测呈阴性(-)的概率为99%。从检测结果的概率来看,检测结果是比较准确的,但是贝叶斯定理却可以揭示一个潜在的问题。假设某公司对全体雇员进行吸毒检测,已知0.5%的雇员吸毒。请问每位检测结果呈阳性的雇员吸毒的概率有多高?令“D”为雇员吸毒事件,“N”为雇员不吸毒事件,“+”为检测呈阳性事件。可得根据上述描述,我们可以计算某人检测呈阳性时确实吸毒的条件概率P(D|+):尽管吸毒检测的准确率高达99%,但贝叶斯定理告诉我们:如果某人检测呈阳性,其吸毒的概率只有大约33%,不吸毒的可能性比较大。假阳性高,则检测的结果不可靠。这是因为该公司不吸毒的人数远远大于吸毒人数,所以即使不吸毒者被误检为阳性的概率仅为1%,其实际被误检人数还是很庞大。举例来说,若该公司总共有1000人(其中5人吸毒,995人不吸),不吸毒的人被检测出阳性的人数有大约10人(1% x 995),而吸毒被验出阳性的人数有5人(99% x 5),总共15人被验出阳性(10 + 5)。在这15人里面,只有约33%的人是真正有吸毒。所以贝叶斯定理可以揭露出此检测在这个案例中的不可靠。同时,也因为不可靠的主因是不吸毒却被误检阳性的人数远多于吸毒被检测出来的人数(上述例子中10人 > 5 人),所以即使阳性检测灵敏度能到100%(即只要吸毒一定验出阳性),检测结果阳性的员工,真正吸毒的概率
P
(
D
|
+
)
{displaystyle P(D|+)}
也只会提高到约33.4%。但如果灵敏度仍然是99%,而特异度却提高到99.5%(即不吸毒的人中,约0.5%会被误检为阳性),则检测结果阳性的员工,真正吸毒的概率可以提高到49.9%。基于贝叶斯定理:即使100%的胰腺癌症患者都有某症状,而某人有同样的症状,绝对不代表该人有100%的概率得胰腺癌,还需要考虑先验概率,假设胰腺癌的发病率是十万分之一,而全球有同样症状的人有万分之一,则此人得胰腺癌的概率只有十分之一,90%的可能是是假阳性。基于贝叶斯定理:假设100%的不良种子都表现A性状,而种子表现A性状,并不代表此种子100%是不良种子,还需要考虑先验概率,假设一共有6万颗不良种子,在种子中的比例是十万分之一(假设总共有60亿颗种子),假设所有种子中有1/3表现A性状(即20亿颗种子表现A性状),则此种子为不良种子的概率只有十万分之三。
相关
- 过劳死过劳死(日语:過労死),源自日语 ,是一种职业性的突然死亡,因工作过度(过劳)致积劳成疾而死。其原因为由压力引起的心脏病发作,或是长期疲倦所导致的中风致死。第一宗有纪录的过劳死个
- 亚非语系亚非语系,又称非亚语系、非洲-亚洲语系或阿非罗-亚细亚语系,旧称闪含语系或闪米特-含米特语系,是现今世界的主要语系之一,包含300种语言,主要分布在亚洲西部的阿拉伯半岛、非洲北部
- 语言的起源语言的起源是一个有高度争议性的话题,由于可得到的实证证据的欠缺,许多人认为严肃的学者不应涉足于此问题。1866年,巴黎语言学会(法语:Société de linguistique de Paris)甚至明
- 劳伦斯县劳伦斯县(Laurens County, Georgia)是美国乔治亚州中南部的一个县。面积2,120平方公里。根据美国2000年人口普查,共有人口44,874人。2005年人口46,896人。县治都柏林(Dublin)。成
- 留里克留里克王朝(俄语:Рюриковичи)是统治东斯拉夫人的古罗斯国家(大致相当于今日俄罗斯东欧部分地区、乌克兰、白俄罗斯部分地区)的第一个王朝。留里克王朝的实际始祖为基辅
- 英国国会政治主题大不列颠及北爱尔兰联合王国议会(英语:The Parliament of the United Kingdom of Great Britain and Northern Ireland),中文简称为英国议会或联合王国议会,是英国和英国
- 生技生物技术(英语:biotechnology),又称为生物科技,指利用生物体(含动物,植物及微生物的细胞)来生产有用的物质或改进制程,改良生物的特性,以降低成本及创新物种的科学技术。根据不同的工
- 令 (纸张单位)令是纸张的单位,又称领。一令就是五百张纸。短令是480张纸,长令(perfect ream)是516张纸。短令是20个short quires,一令是20个quires,一个长令(perfect ream 或 printer's ream)是21
- 马韩君主 · 首都 · 文学史 · 教育史电影史 · 韩医史陶瓷史 · 戏剧史韩国国宝 · 朝鲜国宝马韩,是公元前100年至300年间位于古代朝鲜半岛的西南部(忠清、全罗两道)的部
- 特丽·夏沃特丽·夏沃(Terri Schiavo,全名特里萨·玛丽·珊德勒·夏沃,1963年12月3日-2005年3月31日),是美国的佛罗里达州的一名植物人。她丈夫希望移除其生命维持系统,而她父母反对,最后法院