首页 >
贝叶斯统计
✍ dations ◷ 2025-06-27 22:52:51 #贝叶斯统计
贝叶斯定理(英语:Bayes' theorem)是概率论中的一个定理,描述在已知一些条件下,某事件的发生概率。比如,如果已知某癌症与寿命有关,使用贝叶斯定理则可以通过得知某人年龄,来更加准确地计算出他罹患癌症的概率。通常,事件A在事件B已发生的条件下发生的概率,与事件B在事件A已发生的条件下发生的概率是不一样的。然而,这两者是有确定的关系的,贝叶斯定理就是这种关系的陈述。贝叶斯公式的一个用途,即通过已知的三个概率而推出第四个概率。贝叶斯定理跟随机变量的条件概率以及边缘概率分布有关。作为一个普遍的原理,贝叶斯定理对于所有概率的解释是有效的。这一定理的主要应用为贝叶斯推断,是推论统计学中的一种推断法。这一定理名称来自于托马斯·贝叶斯。贝叶斯定理是关于随机事件A和B的条件概率的一则定理。P
(
A
∣
B
)
=
P
(
B
∣
A
)
P
(
A
)
P
(
B
)
{displaystyle P(Amid B)={frac {P(Bmid A)P(A)}{P(B)}}}其中
A
{displaystyle A}
以及
B
{displaystyle B}
为随机事件,且
P
(
B
)
{displaystyle P(B)}
不为零。
P
(
A
|
B
)
{displaystyle P(A|B)}
是指在事件
B
{displaystyle B}
发生的情况下事件
A
{displaystyle A}
发生的概率。在贝叶斯定理中,每个名词都有约定俗成的名称:按这些术语,贝叶斯定理可表述为:也就是说,后验概率与先验概率和相似度的乘积成正比。另外,比例
P
(
B
|
A
)
/
P
(
B
)
{displaystyle P(B|A)/P(B)}
也有时被称作标准似然度(standardised likelihood),贝叶斯定理可表述为:根据条件概率的定义。在事件B发生的条件下事件A发生的概率是:其中 A与B的联合概率表示为
P
(
A
∩
B
)
{displaystyle P(Acap B)}
或者
P
(
A
,
B
)
{displaystyle P(A,B)}
或者
P
(
A
B
)
{displaystyle P(AB)}
。同样地,在事件A发生的条件下事件B发生的概率整理与合并这两个方程式,我们可以得到这个引理有时称作概率乘法规则。上式两边同除以P(B),若P(B)是非零的,我们可以得到贝叶斯定理:贝叶斯定理通常可以再写成下面的形式:其中AC是A的补集(即非A)。故上式亦可写成:在更一般化的情况,假设{Ai}是事件集合里的部分集合,对于任意的Ai,贝叶斯定理可用下式表示:贝叶斯定理亦可由相似率Λ和可能性O表示:其中定义为B发生时,A发生的可能性(odds);则是A发生的可能性。相似率(Likelihood ratio)则定义为:贝叶斯定理亦可用于连续几率分布。由于概率密度函数严格上并非几率,由几率密度函数导出贝叶斯定理观念上较为困难(详细推导参阅)。贝叶斯定理与几率密度的关系是由求极限的方式建立:全几率定理则有类似的论述:如同离散的情况,公式中的每项均有名称。
f(x, y)是X和Y的联合分布;
f(x|y)是给定Y=y后,X的后验分布;
f(y|x)= L(x|y)是Y=y后,X的相似度函数(为x的函数);
f(x)和f(y)则是X和Y的边际分布;
f(x)则是X的先验分布。
为了方便起见,这里的f在这些专有名词中代表不同的函数(可以由引数的不同判断之)。对于变数有二个以上的情况,贝叶斯定理亦成立。例如:这个式子可以由套用多次二个变数的贝式定理及条件几率的定义导出:一般化的方法则是利用联合几率去分解待求的条件几率,并对不加以探讨的变数积分(意即对欲探讨的变数计算边缘几率)。取决于不同的分解形式,可以证明某些积分必为1,因此分解形式可被简化。利用这个性质,贝叶斯定理的计算量可能可以大幅下降。贝氏网络为此方法的一个例子,贝氏网络指定数个变数的联合几率分布的分解型式,该几率分布满足下述条件:当其他变数的条件几率给定时,该变数的条件几率为一简单型式。下面展示贝叶斯定理在检测吸毒者时的应用。假设一个常规的检测结果的灵敏度和特异度均为99%,即吸毒者每次检测呈阳性(+)的概率为99%。而不吸毒者每次检测呈阴性(-)的概率为99%。从检测结果的概率来看,检测结果是比较准确的,但是贝叶斯定理却可以揭示一个潜在的问题。假设某公司对全体雇员进行吸毒检测,已知0.5%的雇员吸毒。请问每位检测结果呈阳性的雇员吸毒的概率有多高?令“D”为雇员吸毒事件,“N”为雇员不吸毒事件,“+”为检测呈阳性事件。可得根据上述描述,我们可以计算某人检测呈阳性时确实吸毒的条件概率P(D|+):尽管吸毒检测的准确率高达99%,但贝叶斯定理告诉我们:如果某人检测呈阳性,其吸毒的概率只有大约33%,不吸毒的可能性比较大。假阳性高,则检测的结果不可靠。这是因为该公司不吸毒的人数远远大于吸毒人数,所以即使不吸毒者被误检为阳性的概率仅为1%,其实际被误检人数还是很庞大。举例来说,若该公司总共有1000人(其中5人吸毒,995人不吸),不吸毒的人被检测出阳性的人数有大约10人(1% x 995),而吸毒被验出阳性的人数有5人(99% x 5),总共15人被验出阳性(10 + 5)。在这15人里面,只有约33%的人是真正有吸毒。所以贝叶斯定理可以揭露出此检测在这个案例中的不可靠。同时,也因为不可靠的主因是不吸毒却被误检阳性的人数远多于吸毒被检测出来的人数(上述例子中10人 > 5 人),所以即使阳性检测灵敏度能到100%(即只要吸毒一定验出阳性),检测结果阳性的员工,真正吸毒的概率
P
(
D
|
+
)
{displaystyle P(D|+)}
也只会提高到约33.4%。但如果灵敏度仍然是99%,而特异度却提高到99.5%(即不吸毒的人中,约0.5%会被误检为阳性),则检测结果阳性的员工,真正吸毒的概率可以提高到49.9%。基于贝叶斯定理:即使100%的胰腺癌症患者都有某症状,而某人有同样的症状,绝对不代表该人有100%的概率得胰腺癌,还需要考虑先验概率,假设胰腺癌的发病率是十万分之一,而全球有同样症状的人有万分之一,则此人得胰腺癌的概率只有十分之一,90%的可能是是假阳性。基于贝叶斯定理:假设100%的不良种子都表现A性状,而种子表现A性状,并不代表此种子100%是不良种子,还需要考虑先验概率,假设一共有6万颗不良种子,在种子中的比例是十万分之一(假设总共有60亿颗种子),假设所有种子中有1/3表现A性状(即20亿颗种子表现A性状),则此种子为不良种子的概率只有十万分之三。
相关
- 粪小杆线虫粪小杆线虫(学名:Strongyloides stercoralis,俗名:threadworm(美)。又称粪线虫)是一种在人类身上的线虫(寄生虫),会导致粪线虫感染症(英语:Strongyloidiasis)。。粪小杆线虫可以寄宿
- 拉各斯拉各斯(英语:Lagos,英语发音:/ˈleɪɡɒs/ LAY-gos;约鲁巴语:Èkó)为尼日利亚海港及最大城市带,位于国境西南部,也是非洲第一大城市,并为非洲成长速度第二快的城市(居世界第7名)。原名
- 囊性纤维病囊肿性纤维化(英语:cystic fibrosis,缩写作 CF),亦称为囊性纤维化、囊肿性纤维变性、囊肿纤维症、纤维性囊肿或囊纤维变性,是一种常见的遗传疾病,此病症最常影响肺脏,但也常发生于胰
- 健康心理学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
- 认知功能障碍发展障碍、发展迟缓(Developmental disorders),也称心理发展障碍,是一类儿童学习障碍和相关的发育障碍的总称。其包含特殊性发育障碍和广泛性发育障碍。该自闭症关联团体组织的
- 灰胞藻纲灰藻(Glaucophyta,Glaucophytes,Glaucocystophytes或Glaucocystids),也叫灰胞藻,是原始色素体生物的一支,是一类稀见的小型淡水藻类,具有独特的灰质体。灰藻的近缘类群有红藻、皮胆
- 计算机程序计算机程序(英语:Computer Program)是指一组指示计算机或其他具有消息处理能力设备每一步动作的指令,通常用某种程序设计语言编写,运行于某种目标体系结构上。打个比方,一个程序的
- 王 水王水(1942年4月12日-),空间物理学家。生于江苏南京。1961年毕业于南京大学气象系。1993年当选为中国科学院院士。中国科学技术大学教授,中国地球物理学会理事长。曾任中国科技大
- 杂食性杂食性是指吃植物、动物的一类的动物,这类动物什么都能吃,它们不用依靠单一类型的食物如植物或动物来维持生命,却可以只进食单一类型的食物来维持生命,因此对周遭环境有着较强的
- 拉内布拉内布(Raneb)是古埃及第二王朝的一位法老。埃及祭司曼涅托在其所编纂的王表中称其为卡伊靠斯(Kaiechos),并认为其统治了埃及39年。但是,从已经出土的拉内布时期的文物中,并未找到