互信息

✍ dations ◷ 2025-08-23 00:44:26 #信息论,信息学熵

在概率论和信息论中,两个随机变量的互信息(mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度。不同于相关系数,互信息并不局限于实值随机变量,它更加一般且决定着联合分布 p(X,Y) 和分解的边缘分布的乘积 p(X)p(Y) 的相似程度。互信息是点间互信息(英语:Pointwise mutual information)(PMI)的期望值。互信息最常用的单位是bit。

一般地,两个离散随机变量 和 的互信息可以定义为:

其中 (, ) 是 和 的联合概率分布函数,而 p ( x ) {\displaystyle p(x)} 和 的边缘概率分布函数。

在连续随机变量的情形下,求和被替换成了二重定积分:

其中 (, ) 当前是 和 的联合概率函数,而 p ( x ) {\displaystyle p(x)} 和 的边缘概率密度函数。

如果对数以 2 为基底,互信息的单位是bit。

直观上,互信息度量 和 共享的信息:它度量知道这两个变量其中一个,对另一个不确定度减少的程度。例如,如果 和 相互独立,则知道 不对 提供任何信息,反之亦然,所以它们的互信息为零。在另一个极端,如果 是 的一个确定性函数,且 也是 的一个确定性函数,那么传递的所有信息被 和 共享:知道 决定 的值,反之亦然。因此,在此情形互信息与 (或 )单独包含的不确定度相同,称作 (或 )的熵。而且,这个互信息与 的熵和 的熵相同。(这种情形的一个非常特殊的情况是当 和 为相同随机变量时。)

互信息是 和 的联合分布相对于假定 和 独立情况下的联合分布之间的内在依赖性。于是互信息以下面方式度量依赖性:(; ) = 0 当且仅当 和 为独立随机变量。从一个方向很容易看出:当 和 独立时,(,) = () (),因此:

此外,互信息是非负的(即 I ( X ; Y ) 0 {\displaystyle I(X;Y)\geq 0} (|) 和 (|) 是条件熵,而 (,) 是 和 的联合熵。注意到这组关系和并集、差集和交集的关系类似,于是用Venn图表示。

在互信息定义的基础上使用琴生不等式,我们可以证明 (;) 是非负的,因此   H ( X ) H ( X | Y ) {\displaystyle \ H(X)\geq H(X|Y)} () 看作一个随机变量于不确定度的量度,那么 (|) 就是"在已知 事件后事件会发生"的不确定度。于是第一个等式的右边就可以读作“将"Y事件的不确定度",减去 --- "在基于事件后事件因此发生的不确定度"”。

这证实了互信息的直观意义为: "因X而有Y事件"的熵( 基于已知随机变量的不确定性) 在"Y事件"的熵之中具有多少影响地位( "Y事件所具有的不确定性" 其中包含了多少 "Y|X事件所具有的不确性" ),意即"Y具有的不确定性"有多少程度是起因于X事件;

    

所以具体的解释就是: 互信息越小,两个来自不同事件空间的随机变量彼此之间的关系性越低; 互信息越高,关系性则越高 。


注意到离散情形 (|) = 0,于是 () = (;)。因此 (;) ≥ (;),我们可以制定”一个变量至少包含其他任何变量可以提供的与它有关的信息“的基本原理。

互信息也可以表示为两个随机变量的边缘分布 和 的乘积 () × () 相对于随机变量的联合熵 (,) 的相对熵:

此外,令 (|) = (, ) / ()。则

注意到,这里相对熵涉及到仅对随机变量 积分,表达式 D K L ( p ( x | y ) p ( x ) ) {\displaystyle D_{\mathrm {KL} }(p(x|y)\|p(x))} 为变量。于是互信息也可以理解为相对熵 的单变量分布 () 相对于给定 时 的条件分布 (|) :分布 (|) 和 () 之间的平均差异越大,信息增益越大。

对连续型随机变量量化的定义如下:

f ( x i ) Δ = i Δ ( i + 1 ) Δ f ( x ) d x = p i {\displaystyle f(x_{i})\Delta =\int _{i\Delta }^{(i+1)\Delta }f(x)dx=p_{i}}

量化后的随机变量 X Δ {\displaystyle X^{\Delta }} :

X Δ = x i , i Δ X < ( i + 1 ) Δ {\displaystyle X^{\Delta }=x_{i},i\Delta \leq X<(i+1)\Delta }

则,

I ( X Δ ; Y Δ ) = H ( X Δ ) H ( X Δ | Y Δ ) {\displaystyle I(X^{\Delta };Y^{\Delta })=H(X^{\Delta })-H(X^{\Delta }|Y^{\Delta })}

h ( X ) l o g Δ ( h ( X | Y ) l o g Δ ) {\displaystyle \approx h(X)-log{\Delta }-(h(X|Y)-log{\Delta })}

= I ( X ; Y ) {\displaystyle =I(X;Y)}

广义而言,我们可以将互信息定义在有限多个连续随机变量值域的划分。

χ {\displaystyle \chi } 为连续型随机变量的值域, P i P {\displaystyle P_{i}\in P} , 其中 P {\displaystyle P} χ {\displaystyle \chi } 划分所构成的集合,意即 i P i = χ {\displaystyle \cup _{i}P_{i}=\chi }

P {\displaystyle P} 量化连续型随机变量 X {\displaystyle X} 后,所得结果为离散型随机变量,

P r ( P = i ) = P i d F ( x ) {\displaystyle Pr(_{P}=i)=\int _{P_{i}}dF(x)}

对于两连续型随机变量X、Y,其划分分别为P、Q,则其互信息可表示为:

I ( X ; Y ) = s u p P , Q I ( P ; Q ) {\displaystyle I(X;Y)={\underset {P,Q}{sup}}I(_{P};_{Q})}


相关

  • 陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 跨膜蛋白跨膜蛋白(transmembrane protein,TP)是一种贯穿生物膜(细胞膜)两端的蛋白。许多跨膜蛋白的功能是作为通道或“装载码头”来实施拒绝或允许某种特定的物质跨过生物膜的运输、进
  • 碧冬茄属碧冬茄属是一类原产于南美洲的草本植物,有喇叭形花,类似牵牛花,又称矮牵牛属,目前广泛被世界各地引种,作为园艺花卉,存在各色品种及杂交形成的碧冬茄。作为园艺品种的矮牵牛,是由野
  • 阴道口阴道口(vaginal orifice)是阴道开口的缝隙,位在二片小阴唇之间,尿道开口的下方,其大小和处女膜的面积有关,处女膜盖住的面积越大,阴道口则越小。阴道的伸展度常随着年龄的不同而有
  • 司法程序程序法(procedural law、adjective law、rules of court)关乎权利与义务程序的规定,在法学分类中,是相对于关于权利与义务本体之实体法的类别。换句话说,实体法仅规定权利义务,尚
  • 货币扩张货币扩张,也称作货币创造(Money creation),是中央银行、商业银行和非银行(机构或个人)通过信贷关系共同作用,使得在银行体系内流通货币量扩大的金融行为。对货币扩张的控制是中
  • 硫酸四氨合铜硫酸四氨合铜(II)(Tetraamminecopper(II) sulfate)是化学式为SO4的无机化合物,常温下为深蓝色的固体,是配合物。硫酸四氨合铜和Schweizer试剂(英语:Schweizer's reagent)有关,后者在
  • 平面数学上,一个平面(plane)就是基本的二维对象。直观的讲,它可以视为一个平坦的拥有无穷大面积的纸。多数几何、三角学和制图的基本工作都在二维进行,或者说,在平面上进行。给定一个
  • 杜建时杜建时(1906年-1989年11月7日)字际平,河北省武清县(今天津市武清区)人,中华民国陆军中将,中华民国、中华人民共和国政治人物。1925年,杜建时入位于北京黄寺的奉系开办的东北讲武堂北
  • 努比亚长颈鹿北部长颈鹿(学名:),是4种长颈鹿中的一种,斑点呈四方形,栗色;底色为白色。腿内侧及上肢以下无斑点。分布苏丹东部及刚果东北部。种加词为,源于早期罗马帝国时期人们给它起的名字,意思