互信息

✍ dations ◷ 2025-11-08 14:26:08 #信息论,信息学熵

在概率论和信息论中,两个随机变量的互信息(mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度。不同于相关系数,互信息并不局限于实值随机变量,它更加一般且决定着联合分布 p(X,Y) 和分解的边缘分布的乘积 p(X)p(Y) 的相似程度。互信息是点间互信息(英语:Pointwise mutual information)(PMI)的期望值。互信息最常用的单位是bit。

一般地,两个离散随机变量 和 的互信息可以定义为:

其中 (, ) 是 和 的联合概率分布函数,而 p ( x ) {\displaystyle p(x)} 和 的边缘概率分布函数。

在连续随机变量的情形下,求和被替换成了二重定积分:

其中 (, ) 当前是 和 的联合概率函数,而 p ( x ) {\displaystyle p(x)} 和 的边缘概率密度函数。

如果对数以 2 为基底,互信息的单位是bit。

直观上,互信息度量 和 共享的信息:它度量知道这两个变量其中一个,对另一个不确定度减少的程度。例如,如果 和 相互独立,则知道 不对 提供任何信息,反之亦然,所以它们的互信息为零。在另一个极端,如果 是 的一个确定性函数,且 也是 的一个确定性函数,那么传递的所有信息被 和 共享:知道 决定 的值,反之亦然。因此,在此情形互信息与 (或 )单独包含的不确定度相同,称作 (或 )的熵。而且,这个互信息与 的熵和 的熵相同。(这种情形的一个非常特殊的情况是当 和 为相同随机变量时。)

互信息是 和 的联合分布相对于假定 和 独立情况下的联合分布之间的内在依赖性。于是互信息以下面方式度量依赖性:(; ) = 0 当且仅当 和 为独立随机变量。从一个方向很容易看出:当 和 独立时,(,) = () (),因此:

此外,互信息是非负的(即 I ( X ; Y ) 0 {\displaystyle I(X;Y)\geq 0} (|) 和 (|) 是条件熵,而 (,) 是 和 的联合熵。注意到这组关系和并集、差集和交集的关系类似,于是用Venn图表示。

在互信息定义的基础上使用琴生不等式,我们可以证明 (;) 是非负的,因此   H ( X ) H ( X | Y ) {\displaystyle \ H(X)\geq H(X|Y)} () 看作一个随机变量于不确定度的量度,那么 (|) 就是"在已知 事件后事件会发生"的不确定度。于是第一个等式的右边就可以读作“将"Y事件的不确定度",减去 --- "在基于事件后事件因此发生的不确定度"”。

这证实了互信息的直观意义为: "因X而有Y事件"的熵( 基于已知随机变量的不确定性) 在"Y事件"的熵之中具有多少影响地位( "Y事件所具有的不确定性" 其中包含了多少 "Y|X事件所具有的不确性" ),意即"Y具有的不确定性"有多少程度是起因于X事件;

    

所以具体的解释就是: 互信息越小,两个来自不同事件空间的随机变量彼此之间的关系性越低; 互信息越高,关系性则越高 。


注意到离散情形 (|) = 0,于是 () = (;)。因此 (;) ≥ (;),我们可以制定”一个变量至少包含其他任何变量可以提供的与它有关的信息“的基本原理。

互信息也可以表示为两个随机变量的边缘分布 和 的乘积 () × () 相对于随机变量的联合熵 (,) 的相对熵:

此外,令 (|) = (, ) / ()。则

注意到,这里相对熵涉及到仅对随机变量 积分,表达式 D K L ( p ( x | y ) p ( x ) ) {\displaystyle D_{\mathrm {KL} }(p(x|y)\|p(x))} 为变量。于是互信息也可以理解为相对熵 的单变量分布 () 相对于给定 时 的条件分布 (|) :分布 (|) 和 () 之间的平均差异越大,信息增益越大。

对连续型随机变量量化的定义如下:

f ( x i ) Δ = i Δ ( i + 1 ) Δ f ( x ) d x = p i {\displaystyle f(x_{i})\Delta =\int _{i\Delta }^{(i+1)\Delta }f(x)dx=p_{i}}

量化后的随机变量 X Δ {\displaystyle X^{\Delta }} :

X Δ = x i , i Δ X < ( i + 1 ) Δ {\displaystyle X^{\Delta }=x_{i},i\Delta \leq X<(i+1)\Delta }

则,

I ( X Δ ; Y Δ ) = H ( X Δ ) H ( X Δ | Y Δ ) {\displaystyle I(X^{\Delta };Y^{\Delta })=H(X^{\Delta })-H(X^{\Delta }|Y^{\Delta })}

h ( X ) l o g Δ ( h ( X | Y ) l o g Δ ) {\displaystyle \approx h(X)-log{\Delta }-(h(X|Y)-log{\Delta })}

= I ( X ; Y ) {\displaystyle =I(X;Y)}

广义而言,我们可以将互信息定义在有限多个连续随机变量值域的划分。

χ {\displaystyle \chi } 为连续型随机变量的值域, P i P {\displaystyle P_{i}\in P} , 其中 P {\displaystyle P} χ {\displaystyle \chi } 划分所构成的集合,意即 i P i = χ {\displaystyle \cup _{i}P_{i}=\chi }

P {\displaystyle P} 量化连续型随机变量 X {\displaystyle X} 后,所得结果为离散型随机变量,

P r ( P = i ) = P i d F ( x ) {\displaystyle Pr(_{P}=i)=\int _{P_{i}}dF(x)}

对于两连续型随机变量X、Y,其划分分别为P、Q,则其互信息可表示为:

I ( X ; Y ) = s u p P , Q I ( P ; Q ) {\displaystyle I(X;Y)={\underset {P,Q}{sup}}I(_{P};_{Q})}


相关

  • 反复反复流产(recurrent miscarriage)是指两次或两次以上连续流产,过去称为习惯性流产(habitual abortion),而在医学研究中较常使用复发性流产(recurrent pregnancy loss 或 RPL)。造成
  • 别尔哥罗德州别尔哥罗德州(俄语:Белгородская область,罗马化:Belgorodskaya oblast)位于俄罗斯西南部顿河—第聂伯河中间的丘陵,南部、西部与乌克兰接壤。是俄罗斯联邦主
  • 折纸折纸是折或叠纸张的艺术,把纸张折出各种特定的形状和花样,可能是一张纸的作品,也可能是二张以上纸张作品。折纸只需要透过折叠的技巧就可以创造出复杂精细的设计。折纸设计,一般
  • 天卫十七天卫十七(S/1997 U 2, Sycorax)是环绕天王星运行的一颗卫星。天卫十七可能是被天王星捕获的小行星或彗星。
  • 亚历山大·威廉·威廉姆逊亚历山大·威廉·威廉姆逊(英语:Alexander William Williamson,另译:亚历山大·威廉·威廉森,1824年5月1日-1904年5月6日),英国化学家,他被认为是有机合成的先驱人物。有机化学工业中
  • 花色素花青素(英语:anthocyanidin)或称花色素,化学式为C15H11O6,是一种水溶性的植物色素,存在于液泡内的细胞液中。其与糖类物质以糖苷键结合之后即为花色苷,与花的颜色、叶变红等有关,是
  • 平方米平方米,又称为“平方公尺”(符号为m2)是面积的公制单位,其定义是“在一平面上,边长为一米的正方形之面积”。中国大陆在表示房间面积等时又常简称为“平米”或“平”。(1km²=1000
  • 野葛葛(学名:Pueraria montana var. lobata)是葛属山葛的变种。其根部为中草药葛根(中药拉丁名Puerariae Radix),又名鹿藿、黄斤、鸡齐根,主治伤寒温热、头痛项强(颈僵)、烦热消渴、泄泻
  • 少室阙少室阙位于河南省登封市西十里铺(邢家铺)村西的少室山麓,是汉代少室山庙的神道阙。少室阙坐东南向向西北,结构与太室阙相同。由台基、阙身、阙顶组成。阙顶损毁比较严重,东、西
  • 鼻蛭鼻蛭(学名:)为柔蛭科鼻蛭属的一个种,分布于印度、缅甸、斯里兰卡、泰国、马来西亚、日本、台湾岛以及中国大陆的西南地区等地,多生活于高山小积水里(小溪流或小水潭)以及也见于牛、