互信息

✍ dations ◷ 2025-12-03 06:24:45 #信息论,信息学熵

在概率论和信息论中,两个随机变量的互信息(mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度。不同于相关系数,互信息并不局限于实值随机变量,它更加一般且决定着联合分布 p(X,Y) 和分解的边缘分布的乘积 p(X)p(Y) 的相似程度。互信息是点间互信息(英语:Pointwise mutual information)(PMI)的期望值。互信息最常用的单位是bit。

一般地,两个离散随机变量 和 的互信息可以定义为:

其中 (, ) 是 和 的联合概率分布函数,而 p ( x ) {\displaystyle p(x)} 和 的边缘概率分布函数。

在连续随机变量的情形下,求和被替换成了二重定积分:

其中 (, ) 当前是 和 的联合概率函数,而 p ( x ) {\displaystyle p(x)} 和 的边缘概率密度函数。

如果对数以 2 为基底,互信息的单位是bit。

直观上,互信息度量 和 共享的信息:它度量知道这两个变量其中一个,对另一个不确定度减少的程度。例如,如果 和 相互独立,则知道 不对 提供任何信息,反之亦然,所以它们的互信息为零。在另一个极端,如果 是 的一个确定性函数,且 也是 的一个确定性函数,那么传递的所有信息被 和 共享:知道 决定 的值,反之亦然。因此,在此情形互信息与 (或 )单独包含的不确定度相同,称作 (或 )的熵。而且,这个互信息与 的熵和 的熵相同。(这种情形的一个非常特殊的情况是当 和 为相同随机变量时。)

互信息是 和 的联合分布相对于假定 和 独立情况下的联合分布之间的内在依赖性。于是互信息以下面方式度量依赖性:(; ) = 0 当且仅当 和 为独立随机变量。从一个方向很容易看出:当 和 独立时,(,) = () (),因此:

此外,互信息是非负的(即 I ( X ; Y ) 0 {\displaystyle I(X;Y)\geq 0} (|) 和 (|) 是条件熵,而 (,) 是 和 的联合熵。注意到这组关系和并集、差集和交集的关系类似,于是用Venn图表示。

在互信息定义的基础上使用琴生不等式,我们可以证明 (;) 是非负的,因此   H ( X ) H ( X | Y ) {\displaystyle \ H(X)\geq H(X|Y)} () 看作一个随机变量于不确定度的量度,那么 (|) 就是"在已知 事件后事件会发生"的不确定度。于是第一个等式的右边就可以读作“将"Y事件的不确定度",减去 --- "在基于事件后事件因此发生的不确定度"”。

这证实了互信息的直观意义为: "因X而有Y事件"的熵( 基于已知随机变量的不确定性) 在"Y事件"的熵之中具有多少影响地位( "Y事件所具有的不确定性" 其中包含了多少 "Y|X事件所具有的不确性" ),意即"Y具有的不确定性"有多少程度是起因于X事件;

    

所以具体的解释就是: 互信息越小,两个来自不同事件空间的随机变量彼此之间的关系性越低; 互信息越高,关系性则越高 。


注意到离散情形 (|) = 0,于是 () = (;)。因此 (;) ≥ (;),我们可以制定”一个变量至少包含其他任何变量可以提供的与它有关的信息“的基本原理。

互信息也可以表示为两个随机变量的边缘分布 和 的乘积 () × () 相对于随机变量的联合熵 (,) 的相对熵:

此外,令 (|) = (, ) / ()。则

注意到,这里相对熵涉及到仅对随机变量 积分,表达式 D K L ( p ( x | y ) p ( x ) ) {\displaystyle D_{\mathrm {KL} }(p(x|y)\|p(x))} 为变量。于是互信息也可以理解为相对熵 的单变量分布 () 相对于给定 时 的条件分布 (|) :分布 (|) 和 () 之间的平均差异越大,信息增益越大。

对连续型随机变量量化的定义如下:

f ( x i ) Δ = i Δ ( i + 1 ) Δ f ( x ) d x = p i {\displaystyle f(x_{i})\Delta =\int _{i\Delta }^{(i+1)\Delta }f(x)dx=p_{i}}

量化后的随机变量 X Δ {\displaystyle X^{\Delta }} :

X Δ = x i , i Δ X < ( i + 1 ) Δ {\displaystyle X^{\Delta }=x_{i},i\Delta \leq X<(i+1)\Delta }

则,

I ( X Δ ; Y Δ ) = H ( X Δ ) H ( X Δ | Y Δ ) {\displaystyle I(X^{\Delta };Y^{\Delta })=H(X^{\Delta })-H(X^{\Delta }|Y^{\Delta })}

h ( X ) l o g Δ ( h ( X | Y ) l o g Δ ) {\displaystyle \approx h(X)-log{\Delta }-(h(X|Y)-log{\Delta })}

= I ( X ; Y ) {\displaystyle =I(X;Y)}

广义而言,我们可以将互信息定义在有限多个连续随机变量值域的划分。

χ {\displaystyle \chi } 为连续型随机变量的值域, P i P {\displaystyle P_{i}\in P} , 其中 P {\displaystyle P} χ {\displaystyle \chi } 划分所构成的集合,意即 i P i = χ {\displaystyle \cup _{i}P_{i}=\chi }

P {\displaystyle P} 量化连续型随机变量 X {\displaystyle X} 后,所得结果为离散型随机变量,

P r ( P = i ) = P i d F ( x ) {\displaystyle Pr(_{P}=i)=\int _{P_{i}}dF(x)}

对于两连续型随机变量X、Y,其划分分别为P、Q,则其互信息可表示为:

I ( X ; Y ) = s u p P , Q I ( P ; Q ) {\displaystyle I(X;Y)={\underset {P,Q}{sup}}I(_{P};_{Q})}


相关

  • 车辆工程载具指载运工具,也称交通工具,是指使用于人或货物运输的设备。本身不产生位移的传送带或非人造的某些水面漂浮物都不能称为“载具”。为上述目的以人的意志为驱使的动物和人本
  • HIOsub2/sub亚碘酸,化学式为HIO2,它非常不稳定只能在水溶液中短暂存在。至今也没有可靠报道制得了这种酸。
  • 彼得·瓦尔特彼得·瓦尔特(德语:Peter Walter,1954年12月5日-),出生在柏林,德裔美国生物化学家和分子生物学家。自1983年以来,他在加利福尼亚大学旧金山分校任教授,自1997年以来为霍华德·休斯医
  • 能量守恒能量守恒定律(英语:law of conservation of energy)阐明,孤立系统的总能量 E {\displaystyle E} 保持不变。如果一个系统处于孤立
  • 白莲教白莲教,是跨越多个中国史上朝代的一个秘密民间宗教组织,发展过程中融入了包括弥勒教在内的其他组织的内容,但一般认为主源是源于宋高宗绍兴三年(1133年),由茅子元创立的佛教净土宗
  • 仙桃市仙桃市是湖北省直辖县级行政区(副地级市),武汉城市圈西翼中心城市、长江中游城市群重要成员,位于湖北省中南部江汉平原腹地,汉水南岸与东荆河北岸之间,长江与汉水交汇的冲积三角洲
  • 中华人民共和国软件产业中华人民共和国的软件产业最近几年发展的非常迅速,中华人民共和国的软件产业规模从2000年的593亿人民币增长到2010年的18400亿人民币。复合年均增长率为36.65%。在20世纪50年
  • 以实玛利 (伊斯兰教)以实玛利,或称易斯马仪、易司马仪、伊斯梅尔,是伊斯兰教的先知,是亚伯拉罕(易卜拉欣)的儿子,与夏甲(哈哲尔)所生。以实玛利享寿一百三十七岁,气绝而死,归到他列祖(原文是本民)那里。以实
  • 摩根索计划摩根索计划(Morgenthau Plan)是二战期间提出的德国占领计划之一,计划的提出人是美国财政部长小亨利·摩根索。该计划的内容包括将德国分为南、北德;将德国的主要工业区萨尔兰鲁
  • 阿德纳·查菲阿德纳·罗曼扎·霞飞(英语:Adna Romanza Chaffee,1842年4月14日-1914年11月1日),美国陆军中将、参谋长。霞飞出生在俄亥俄州阿士塔布拉县。1862年入伍,参加南北战争,后来又参加北美