互信息

✍ dations ◷ 2025-06-29 03:27:22 #信息论,信息学熵

在概率论和信息论中,两个随机变量的互信息(mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度。不同于相关系数,互信息并不局限于实值随机变量,它更加一般且决定着联合分布 p(X,Y) 和分解的边缘分布的乘积 p(X)p(Y) 的相似程度。互信息是点间互信息(英语:Pointwise mutual information)(PMI)的期望值。互信息最常用的单位是bit。

一般地,两个离散随机变量 和 的互信息可以定义为:

其中 (, ) 是 和 的联合概率分布函数,而 p ( x ) {\displaystyle p(x)} 和 的边缘概率分布函数。

在连续随机变量的情形下,求和被替换成了二重定积分:

其中 (, ) 当前是 和 的联合概率函数,而 p ( x ) {\displaystyle p(x)} 和 的边缘概率密度函数。

如果对数以 2 为基底,互信息的单位是bit。

直观上,互信息度量 和 共享的信息:它度量知道这两个变量其中一个,对另一个不确定度减少的程度。例如,如果 和 相互独立,则知道 不对 提供任何信息,反之亦然,所以它们的互信息为零。在另一个极端,如果 是 的一个确定性函数,且 也是 的一个确定性函数,那么传递的所有信息被 和 共享:知道 决定 的值,反之亦然。因此,在此情形互信息与 (或 )单独包含的不确定度相同,称作 (或 )的熵。而且,这个互信息与 的熵和 的熵相同。(这种情形的一个非常特殊的情况是当 和 为相同随机变量时。)

互信息是 和 的联合分布相对于假定 和 独立情况下的联合分布之间的内在依赖性。于是互信息以下面方式度量依赖性:(; ) = 0 当且仅当 和 为独立随机变量。从一个方向很容易看出:当 和 独立时,(,) = () (),因此:

此外,互信息是非负的(即 I ( X ; Y ) 0 {\displaystyle I(X;Y)\geq 0} (|) 和 (|) 是条件熵,而 (,) 是 和 的联合熵。注意到这组关系和并集、差集和交集的关系类似,于是用Venn图表示。

在互信息定义的基础上使用琴生不等式,我们可以证明 (;) 是非负的,因此   H ( X ) H ( X | Y ) {\displaystyle \ H(X)\geq H(X|Y)} () 看作一个随机变量于不确定度的量度,那么 (|) 就是"在已知 事件后事件会发生"的不确定度。于是第一个等式的右边就可以读作“将"Y事件的不确定度",减去 --- "在基于事件后事件因此发生的不确定度"”。

这证实了互信息的直观意义为: "因X而有Y事件"的熵( 基于已知随机变量的不确定性) 在"Y事件"的熵之中具有多少影响地位( "Y事件所具有的不确定性" 其中包含了多少 "Y|X事件所具有的不确性" ),意即"Y具有的不确定性"有多少程度是起因于X事件;

    

所以具体的解释就是: 互信息越小,两个来自不同事件空间的随机变量彼此之间的关系性越低; 互信息越高,关系性则越高 。


注意到离散情形 (|) = 0,于是 () = (;)。因此 (;) ≥ (;),我们可以制定”一个变量至少包含其他任何变量可以提供的与它有关的信息“的基本原理。

互信息也可以表示为两个随机变量的边缘分布 和 的乘积 () × () 相对于随机变量的联合熵 (,) 的相对熵:

此外,令 (|) = (, ) / ()。则

注意到,这里相对熵涉及到仅对随机变量 积分,表达式 D K L ( p ( x | y ) p ( x ) ) {\displaystyle D_{\mathrm {KL} }(p(x|y)\|p(x))} 为变量。于是互信息也可以理解为相对熵 的单变量分布 () 相对于给定 时 的条件分布 (|) :分布 (|) 和 () 之间的平均差异越大,信息增益越大。

对连续型随机变量量化的定义如下:

f ( x i ) Δ = i Δ ( i + 1 ) Δ f ( x ) d x = p i {\displaystyle f(x_{i})\Delta =\int _{i\Delta }^{(i+1)\Delta }f(x)dx=p_{i}}

量化后的随机变量 X Δ {\displaystyle X^{\Delta }} :

X Δ = x i , i Δ X < ( i + 1 ) Δ {\displaystyle X^{\Delta }=x_{i},i\Delta \leq X<(i+1)\Delta }

则,

I ( X Δ ; Y Δ ) = H ( X Δ ) H ( X Δ | Y Δ ) {\displaystyle I(X^{\Delta };Y^{\Delta })=H(X^{\Delta })-H(X^{\Delta }|Y^{\Delta })}

h ( X ) l o g Δ ( h ( X | Y ) l o g Δ ) {\displaystyle \approx h(X)-log{\Delta }-(h(X|Y)-log{\Delta })}

= I ( X ; Y ) {\displaystyle =I(X;Y)}

广义而言,我们可以将互信息定义在有限多个连续随机变量值域的划分。

χ {\displaystyle \chi } 为连续型随机变量的值域, P i P {\displaystyle P_{i}\in P} , 其中 P {\displaystyle P} χ {\displaystyle \chi } 划分所构成的集合,意即 i P i = χ {\displaystyle \cup _{i}P_{i}=\chi }

P {\displaystyle P} 量化连续型随机变量 X {\displaystyle X} 后,所得结果为离散型随机变量,

P r ( P = i ) = P i d F ( x ) {\displaystyle Pr(_{P}=i)=\int _{P_{i}}dF(x)}

对于两连续型随机变量X、Y,其划分分别为P、Q,则其互信息可表示为:

I ( X ; Y ) = s u p P , Q I ( P ; Q ) {\displaystyle I(X;Y)={\underset {P,Q}{sup}}I(_{P};_{Q})}


相关

  • 旭川医科大学旭川医科大学旭川医科大学(あさひかわいかだいがく),位于北海道旭川市的国立大学,是单科大学。医学部 医学科 保健学科医学 医学部旭川医科大学
  • 安赛蜜Ace K乙酰磺胺酸钾(英语:Acesulfame potassium,又称为乙酰氨基磺酸钾、醋磺内酯钾,俗称为安赛蜜)是一种无卡路里的甜味剂。在欧盟,其E编码(添加剂编码)是E950。它是由德国化学家卡尔
  • 华安县华安县地处福建省漳州市西北端。通行闽南方言漳州话。辖6镇,3乡,7个农林场:华丰镇、丰山镇、沙建镇、新圩镇、高安镇、仙都镇、高车乡、马坑乡和湖林乡。清乾隆十二年(1747年)龙
  • 梅克伦堡-施特雷利茨自由邦梅克伦堡-施特雷利茨自由邦(德语:Freistaat Mecklenburg-Strelitz)是魏玛共和国的自由邦之一,创建于1918年,前身是梅克伦堡-施特雷利茨大公国。1933年纳粹党上台之后,该邦和梅克伦
  • 农业地质学农业地质学(英语:Agricultural geology)是地质学的一个分支,主要是研究一些可耕作土壤和肥料的成分,对于农业和园艺非常重要。至于专门研究农业地质学的人叫农业地质学家。
  • M211969年(XM21;1975年重新命名为M21)至1988年M21狙击手武器系统(M21 Sniper Weapon System简称:M21 SWS)是一支半自动狙击步枪,是在M14自动步枪的基础上改进研制的。美国陆军从1969年
  • 宁西铁路宁西铁路是连接南京与西安两座城市的铁路系统,东起江苏省南京市,经安徽省合肥市、六安市,河南省信阳市、南阳市,湖北省随州市,穿越秦岭进入陕西省,经商洛市、渭南市,至西安市西安站
  • 国际电话区号列表这里是一张全球国际电话服务的区号列表。所有的区号都是根据国际电信联盟(ITU)的E.123和E.164(英语:E.164)标准所分配的。所有的号码都是前缀号,也就是说这些号码是用来“拨到”目
  • 音乐宇宙音乐宇宙又称音乐的普适性或天体音乐(拉丁语:Musica universalis,Musica:音乐的中世纪拉丁文名称),是一种古老的哲学概念,相关比例在运动的天体上如太阳、月亮和行星等遵从音乐的普
  • 阮忠直阮忠直(越南语:Nguyễn Trung Trực/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H