频域分辨光学开关

✍ dations ◷ 2024-12-22 20:08:58 #非线性光学,激光,光学计量

频域分辨光学开关是一种用于测量超短激光脉冲的通用方法,测量脉冲的时间尺度可从亚飞秒到纳秒。测量超短脉冲在早先很难实现,这是因为一般来说,测量一个事件,需要一个更短时间尺度的事件作为参照。而超短激光脉冲实际上是当前人类所能创造的最短时间尺度的事件。因此,对于超短激光脉冲的测量,此前人们认为是不可能的。FROG作为解决这个问题的最早技术,由Rick Trebino与Dan Kane于1991年提出,其主要思想是通过测量脉冲的“自谱图”(即脉冲在非线性光学介质中对其自身进行开关操作,开关操作后的脉冲又将其自身反映在它形成的谱中)。因为该谱是两脉冲间延迟时间的函数,使用二维相提取算法从便可从脉冲的FROG记录中提取脉冲的相关信息。

FROG替代了原有的自相关方法而成为当前测量超短激光脉冲的标准技术。旧的自相关方法只能大致估计脉冲长度,而FROG是谱分辨的自相关,允许人们利用相提取算法得到精确的脉冲强度,相信息和时间,对于简单脉冲与复杂脉冲皆能使用。简单的FROG配置仅需要一些简单排列的光学组件。FROG与GRENOUILLE(法语的FROG)在学术界与工业界的实验室中得到了广泛的应用。

1991年,Kane与Trebino引入了FROG,它是一种简单的谱分辨自相关技术,仅仅需要将光谱仪从自相关器件边移动到其后 。

FROG需要脉冲对其自身进行开关操作,所要进行的测量是光谱与两束脉冲间的延时。通常,参照脉冲的自身参数是容易得到的(FROG技术),如果再使用XFROG技术与此参照脉冲,对未知脉冲也可实现开关操作。一般表达式为

I X F R O G ( ω , τ ) = | E s i g ( t , τ ) e i ω t d t | 2 {\displaystyle I_{XFROG}(\omega ,\tau )=\left|\int _{-\infty }^{\infty }E_{sig}(t,\tau )e^{-i\omega t}dt\right|^{2}}

其中信号场Esig(t, τ)作为时间与延迟时间的函数,通常的定义形式为Esig(t, τ)=E(t)Egate(t - τ)。FROG中,开关函数Egate(t - τ),是希望测得的输入的脉冲场E(t)的函数。当非线性光学过程为二次谐波(SHG)时,Egate(t - τ) = E(t);当使用极性开光(PG)时,Egate(t - τ) = |E(t)|2。在FROG中,Egate(t - τ)可为作用在参照脉冲上的任何已知脉冲函数。总的来说,Esig(t, τ)可为包含足够信息用于重构脉冲的时间与延迟时间的任意函数。

FROG和XFROG的迹(trace)被定义为脉冲的谱图(在FROG中,称为自谱图更为恰当)。它们通常能非常直观地描述脉冲。

理论上可以证明FROG方案优于自相关方法。令Esig(t, τ)为某一新信号场Esig(t, Ω)关于其频率Ω的一维傅立叶变换。容易证明(对下式中Ω进行积分,得到之前的方程)

I X F R O G ( ω , τ ) = | E ^ s i g ( t , Ω ) e i Ω τ d τ d Ω | 2 {\displaystyle I_{XFROG}(\omega ,\tau )=\left|\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }{\widehat {E}}_{sig}(t,\Omega )e^{-i\Omega \tau }d\tau d\Omega \right|^{2}}

找到Êsig(t,Ω)就足以决定脉冲场E(t)。这样,FROG的迹是Êsig(t,Ω)的二维傅立叶变换的模平方,这形似于一维相提取问题,只是情况换作二维。人们已经证明,二维的相提取问题,实质上与一维相提取有很大不同,本质上是适定的(适定性问题),简单的。存在可靠的迭代算法适用于寻找所希望的二维场Êsig(t,Ω)与E(t)。FROG的相提取问题是涉及到一般二维相提取算法,但略有不同,可以证明这种算法非常可靠,高效。除非脉冲形状特别复杂,一般笔记本上处理时间小于0.1秒。实际上,FROG已经成为一种对超短激光脉冲进行测量相当有效而灵活的手段,不论是由自由电子激光器产生的20fs的紫外(UV)脉冲,还是形状奇特的红外辐射(IR)。FROG已经可以轻松测量少周期飞秒脉冲,对设备进行一些改动便可用于测量阿秒脉冲。

FROG还有一个方便的特性,就是它能够产生对其测量进行确认的反馈。因为所测得FROG的迹的信息远多于决定脉冲本身所需要的信息,当测得的迹与提取的迹吻合时,测量可以任定为正确。反之,可推断设备有问题,或输入脉冲场的时域空域参数被破坏了,测量不可置信。由于超短脉冲测量非常困难,这种反馈是很重要的。

使用FROG可以测量光子数只有几百(这意味着存在随机相,相干性很差),时域带宽超过1000(原子单位),时域空域参数不断变化的超短激光脉冲。

相关

  • 马卢尔县马卢尔县(英语:Malheur County,发音: /mælˈhɪər/)是美国俄勒冈州东南部的一个县,东隔蛇河与爱达荷州相望,南邻内华达州。马卢尔县亦是组成东俄勒冈的八个县份之一。马卢尔县面
  • 腓力四世美男子腓力四世(法语:Philippe IV le Bel,1268年4月28日-1314年11月29日)卡佩王朝第11位国王(1285年—1314年在位),纳瓦拉国王(1284年起,称腓力一世)。他是卡佩王朝后期一系列强大有力
  • WI-38WI-38是一种生物医学领域常用的细胞系(英语:cell line),其本质为体外(in vitro)培养的人胚肺成纤维细胞。该细胞系由美国生物学家雷纳德·海弗里克(英语:Leonard Hayflick)于1960年建
  • 亚利桑纳州截至2010年亚利桑那州(英语:Arizona,i/ɛərᵻˈzoʊnə, ærᵻ-/)是美国一个位于西南部的州份,同时也是西部和山区州份之一。此州是美国第6大及人口第14大的州份。首府和最大城
  • 企鹅出版集团企鹅出版集团(Penguin Books)是一个在1935年于英国创立的出版社,创始人是艾伦·莱恩(Allen Lane),主要出版纸版书籍,是英国、新西兰、澳大利亚和印度的主流出版商。其ISBN注册号为0
  • 凯瑟琳·毕格罗凯瑟琳·安·毕奇洛(Kathryn Ann Bigelow,1951年11月27日-),生于美国加州,美国电影导演,首位奥斯卡最佳导演奖女性得主。她主要执导科幻、动作和恐怖题材的影片。其最近的两部作品
  • 金刚《金刚》(英语:King Kong)是一部1933年的黑白怪兽电影。本片由雷电华影业公司制作发行,梅里安·C·库珀(Merian C. Cooper)和欧内斯特·B·舍德萨克(Ernest B. Schoedsack)执导,菲伊
  • 链束植物真蕨纲(Polypodiopsida),又称为链束植物(Monilophytes)是植物界中真叶植物下的两个演化支之一,是种子植物的姊妹群。真蕨纲比起较原始的石松门多了真正的叶子,但比起较进化的种子植
  • 郑鸿猷郑鸿猷(1856年-1920年),字澄川,号赞侯,彰化鹿港人,知名书法家。光绪年间秀才,诗文、策论,皆有声于时。书画俱佳,艺术涵养颇深,据说科考时,被主考官评为“字冠全台”。主张“磨墨者,师也;写
  • 一氧化三碳一氧化三碳,化学式C3O,是一种高活性的碳氧化物自由基,可在外太空找到,也能在实验室瞬时合成,可以将其截留在惰性气体基质(英语:inert gas matrix)中或制成短寿命气体。C3O可以被归类