失效率

✍ dations ◷ 2024-11-05 18:48:07 #失效率
失效率(英语:Failure rate),也称故障率,是一个工程系统或零件失效的频率,单位通常会用每小时的失效次数,一般会用希腊字母λ表示,是可靠度工程中的重要参数。系统的失效率一般会随着时间及系统的生命周期而改变。例如车辆在第五年时的失效率会比第一年要高很多倍,一般新车是不会需要换排气管、检修刹车,也不会有重大传动系统的问题。实务上,一般会使用平均故障间隔(MTBF, 1/λ)而不使用失效率。若是失效率假设是定值的话,此作法是有效的(定值失效率的假设一般常用在复杂元件/糸统,军事或航天的一些可靠度标准中的也接受此假设),不过只有在浴缸曲线中平坦的部分(这也称为“可用生命期”)才符合失效率是定值的情形,因此不适合将平均故障间隔外插去预估元件的生命期,因为当时会碰到浴缸曲线的损耗阶段,失效率会大幅提高,生命期会较依失效率推算的时间要少。失效率一般会用固定时间(例如小时)下的失效次数表示,原因是这样的用法(例如2000小时)会比很小的数值(例如每小时0.0005次)容易理解及记忆。在一些需要管理失效率的系统(特别是安全系统)中,平均故障间隔是重要的系统参数。平均故障间隔常出现在工程设计要求中,也决定了系统维护及检视的频率。失效率是保险、财务、商业及管制行业中的一个重要因子,也是安全系统设计的基础,应用在许多不同的场合中。风险率(Hazard rate)及故障发生率(rate of occurrence of failures, ROCOF)的定义和失效率不同,常误认为和失效率定义相同。失效率可以用以下的方式定义:虽然失效率 λ ( t ) {displaystyle lambda (t)} 常被视为假设时间 t {displaystyle t} 前没有失效的情形下,在一段特定时间内出现失效的几率,但失效率可能会大于1,因此其实不是几率。若错误的将失效率以%表示,也很容易造成对于失效率不正确的认知。失效率可以用可靠度函数来定义,可靠度函数也称为生存函数,是在时间 t {displaystyle t} 之前没有失效的几率。在从时间 t 1 {displaystyle t_{1}} (或 t {displaystyle t} )到 t 2 {displaystyle t_{2}} 之间时间区间 ( t 2 − t 1 ) {displaystyle (t_{2}-t_{1})} ,而 Δ t {displaystyle Delta t} 定义为 ( t 2 − t 1 ) {displaystyle (t_{2}-t_{1})} 。计算较短时间区间下的失效率,可以得到风险率(或风险函数) h ( t ) {displaystyle h(t)} ,是 Δ t {displaystyle scriptstyle Delta t} 趋近于零时的瞬时失效率:连续的失效率和失效分布 F ( t ) {displaystyle scriptstyle F(t)} 有关,失效分布是描述失效几率的累积分布函数:其中 T {displaystyle {T}} 失效时间。失效分布函数是几率密度函数f(t)的积分风险函数可以定义为许多几率分布可以用来做为失效分布的建模,常见的模型是指数失效分布:是以指数分布为基础的失效分布,风险函数为:因此对于指数失效分布,风险函数对时间为定值(分布为无记忆性(英语:Memorylessness))。但对于像韦伯分布或对数正态分布等其他分布,风险函数对时间可能不是定值。失效率递减(DFR)是指一零件或系统在一段特定时间内,失效率会随着时间而减小的现象。像早期失效已被移除或是修正后,就会有一段时间有失效率递减的情形,此时的λ(t)为递减函数。DFR的随机变数混合后仍为DFR,而指数分布的随机变数混合后也是为DFR。失效率递增是因为零件老化所造成,失效率递减则是指一个系统会随着时间而渐渐强化。 在太空船的生命期中有发现失效率递减的情形,Baker和Baker的注解是“这太空船会一直一直维持下去。”。太空船空调系统的可靠度发现符合指数分布,因此也会满足失效率递减的情形。当失效率递减时,其变异系数⩾ 1,当失效率递增时,其变异系数 ⩽ 1.,不过这只在失效率是定义在整个t ⩾ 0的时间下才有效,而且无法由变异系数去反推失效率。失效率资料可以由许多方式求得,常见的有以下几种方式:失效率一般会用固定时间(例如小时)下的失效次数表示,不过也可以用其他的单位,像是公里数、旋转圈数……等来代替固定的时间。在工程应用上,因为失效率一般很低,个别零件失效率常以PPM表示,也就是每百万工作小时的失效次数。失效率也会以菲特(FIT, Failures In Time)表示,是109设备-小时下(例如一千个零件运转百万小时,一百万个零件运转一千小时……等)预期的失效次数,一般用在半导体产业中。菲特和失效间隔时间(MTBF)之间的关系是MTBF = 1,000,000,000 x 1/FIT。在一定的工程假设下(例如固定的失效率,以及考虑的系统没有明显的冗余),复杂系统的失效率可以表示为个别元件失效率的和,但各元件的失效率需要有一致的单位,例如每百万工作小时等。因此可以测试每个别的元件或子系统,将其失效率加总后即可以得到整体的失效率。假设要估计特定元件的失效率,可以用以下的测试方式测试其失效率。用十个完全相同的元件测试到损坏或是满1000小时为止,(此例中不考虑 统计的信赖区间),记录测试的总时间,以及总共损坏元件的个数,其结果如下:或是每百万工作小时会有799.8次失效。尼尔森-艾伦估测子(英语:Nelson–Aalen estimator)可以用来估计累积危险率函数。

相关

  • 肺炎球菌肺炎链球菌疫苗是用于对抗肺炎链球菌的疫苗。 疫苗能够有效防止某些肺炎、脑膜炎和败血症。目前有两种肺炎链球菌疫苗:结合型疫苗(Pneumococcal conjugate vaccine, PCV)及多糖
  • 化学合成在化学中,化学合成是以得到一种或多种产物为目的而进行的一系列化学反应。合成通常表现为通过物理或化学方法操纵的一步或多部反应。在现代的实验室应用中,合成通常暗示整个过
  • 史蒂芬斯-强森症候群史蒂芬斯-强森综合征(英语:Stevens-Johnson syndrome,缩写为 SJS),又称史提芬强生综合征、史帝文生氏-强生综合征、史帝文生-强生综合征,是"多型性红斑"(Erythema multiforme)的一
  • 2016年东南亚霾害2016年东南亚霾害是由苏门答腊和加里曼丹的印尼农业大火引起的空气污染灾害。其影响了东南亚多个国家,包括印度尼西亚,马来西亚和新加坡。火灾归因于当地的非法刀耕火种行为。
  • 地面臭氧层在对流层里存在的臭氧属于一种对生物有害的污染物,是光化学烟雾的组成部分之一(而平流层(臭氧层)中的臭氧则是对生物至关重要的紫外线吸收剂)。许多涉及化学能量快速转化的人类活
  • 半纤维素半纤维素(Hemicellulose)是与纤维素共同存在于大多数植物细胞壁的一类杂聚多糖(矩阵型多糖,如阿拉伯木聚糖(英语:Arabinoxylan))。纤维素是结晶的、强壮的、抗水解,聚合度为7000-15
  • 明亚省明亚省(阿拉伯语:محافظة المنيا‎),是埃及的一个省,位于该国中北部。首府明亚。面积3万2279平方公里,2006年统计人口417万9309人,2011年估计人口约460万人。在九成人口
  • 肌肉酸痛肌肉痛(英语:Myalgia),如字面意思所言——肌肉疼痛,是多种疾病的症状,其最常见的成因是肌肉(群)的过度拉伸、过度使用。没有肌肉创伤史的肌肉痛则通常是由病毒感染所引起,而长期肌肉
  • x字高在西文字体排印学中,x字高,(英语:x-height或corpus size)是指字母的基本高度,精确地说,就是基线(英语:baseline)和主线之间的距离。特别的,它指称一个字体中小写字母x的高度(这也是这个
  • 三读五对三读五对是台湾药师及护理师在发放药物给病患,或是为住院病人给药时,为避免给药错误,因此建议执行的程序,属于一种减少人为错误的人工作业方式,可以避免因发放药物错误而造成的医