几何学中,设点 是三角形 平面上一点,作直线 、 和 分别关于角 、 和 的平分线的反射,这三条反射线必然交于一点,称此点为 关于三角形 的等角共轭。(这个定义只对点,不是对三角形 的边。)
点 的等角共轭点经常记作 ,显然 的等角共轭点即为 。
内心 的等角共轭点是自身。垂心 的等角共轭点是外心 。重心的等角共轭点是类似重心 。
在三线坐标中,如果 = : : 是不在三角形 边上的一点,那么它的等角共轭是 1/ : 1/ : 1/。因此, 的等角共轭有时也记作 −1。三角形内部的点集 在三线乘法
下构成一个交换群。 中任何一点 的逆是 −1。
因为等角共轭是一个函数,从而我们可以讨论一个点集的等角共轭。譬如,直线的等角共轭是一条外接圆锥曲线;确切的,若直线交外接圆于 0、1或 2 点,其等角共轭分别为椭圆、抛物线或双曲线。外接圆的等角共轭是无穷远直线。一些有名的三次曲线(例如:Thompson 三次曲线、Darboux 三次曲线、Neuberg 三次曲线)是自等角共轭的,即如果 X 位于这些三次曲线上,那么 −1 也在其上。