对称差

✍ dations ◷ 2025-10-31 07:25:52 #抽象代数,集合论基本概念,二元运算

数学上,两个集合的对称差是只属于其中一个集合,而不属于另一个集合的元素组成的集合。集合论中的这个运算相当于布尔逻辑中的异或运算。

集合 A {\displaystyle A} B {\displaystyle B} 的对称差通常表示为 A B {\displaystyle A\operatorname {\triangle } B} ,对称差的符号在有些图论书籍中也使用 {\displaystyle \oplus } 符号来表示。例如:集合 { 1 , 2 , 3 } {\displaystyle \{1,2,3\}} { 3 , 4 } {\displaystyle \{3,4\}} 的对称差为 { 1 , 2 , 4 } {\displaystyle \{1,2,4\}} 。所有学生的集合和所有女性的集合的对称差为所有男性学生和所有女性非学生组成的集合。

对称差是集合间的运算,两个集合 A {\displaystyle A} B {\displaystyle B} ,其对称差 A B {\displaystyle A\operatorname {\triangle } B} 有几种等价的定义方式:

对称差运算的主要性质包括:

以对称差作为加法,交集为乘法,任何集合 X {\displaystyle X} 的幂集 P ( X ) {\displaystyle {\mathcal {P}}(X)} 构成一个布尔环,并可以诱导一个同构的布尔代数。

综上可得,采用对称差运算,任意集合 X {\displaystyle X} 的幂集是阿贝尔群。由于该群中所有元素都是其自身的负元,这个群实际上是二元域 Z 2 {\displaystyle Z_{2}} 上的向量空间。若 X {\displaystyle X} 有限,则以其为元素的单元素集合构成这个向量空间的基,那么向量空间的维数等于 X {\displaystyle X} 的元素个数。这种构造方法用于图论,可定义图的圈空间。

对称差满足的恒等式有:

或者用异或运算( {\displaystyle \oplus } )表示:

对称差可以在任意布尔代数中定义,写作:

相关

  • 字体排印学字体排印学(英语:typography)又称为文字设计,是通过排版使得文字易认、可读和优美的技艺。排版,即安排活字的方式,包括字体与字号的选取、栏宽与行高的设定以及字距的调整等。在西
  • 干炒干炒,也称干煸、焦炒,是炒的一种,为中餐的一种烹调方法。干炒使用切成细条、丝或片的原料,调味后加入旺火热油的锅内,快速翻炒,直到汤汁蒸发,出锅。特点是口感干香酥脆。
  • 继妃富察氏清太祖继妃(16世纪-1620年),姓富察氏,名衮代(满语:ᡤᡠᠨᡩᠠᡳ,太清:Gundei)。莽塞杜诸祜之女,清太祖努尔哈赤的继娶福晋,后世编撰的文献中称之为“继妃”、“清太祖继妃”。相关转述,称
  • 文廉文廉(1810年-1870年11月24日),字洁溪,齐里特氏,正蓝旗蒙古文元佐领下人,道光十五年翻译进士。
  • 茚三酮茚三酮(宁希德林),一种有机化合物,被广泛用于检测氨、一级和二级胺,尤其是氨基酸。茚三酮与它们反应时产生深蓝色或紫色,称为罗曼紫(Ruhemann's purple)。法医学上这个反应被用于
  • 包孝《松江邦彦图》之包孝像包孝(?-?),字元爱,号吴石,浙江嘉兴人,明朝政治人物,同进士出身。祖父包鼎,官至池州府知府。到了父亲这一辈,全家迁居直隶华亭(今上海市松江区)。嘉靖十四年(1535年)乙
  • 王象之王象之,字仪父,婺州金华(今浙江金华)人。其父王师古,绍兴二十四年(1154年)进士,历任州县官。象之早年随父遍历江、淮、荆、闽等地。庆元二年(1196年)进士,曾任潼川府(今四川三台)文学、长
  • 狗古智卑狗狗古智卑狗(生卒年不详)乃《三国志》中记载魏国历史的《魏书·东夷传》(一般日本通称为《魏志倭人传》)里记载,狗奴国中掌握实权之官员。《魏书·东夷传》之原文为:由于《和名类聚
  • 蔡旻蔡旻,又名蔡文,明郑时期将军,官拜援剿中镇,驻地原在燕巢等地,后移驻现今高雄市路竹区文北里和文南里一带,后为纪念蔡文将军,目前民间以蔡文称文南文北一带
  • JR四国2000系柴油动车组2000系柴油动车组(日语:JR四国2000系気動車)是四国旅客铁道(JR四国)和土佐黑潮铁道的特急形柴油动车组。随着四国岛内的高速公路不断完善,行经土讃线的列车因为线路弯道大、坡道大