时间序列 (PSD);这描述了一个信号或时间序列的功率随频率的分布,正如前面给出的简单例子一样。在这里,功率可以是实际的物理功率,不过更多时候,为了更方便用于抽象信号,简单地确定为信号的平方值。例如,统计学系研究时间(或其他独立变量)的函数 的方差,并类比电信号,习惯称之为,即使没有涉及到物理上的功率。若要创建一个 的物理电压源并加在1 欧姆的电阻器两端,于是在电阻器上消耗的瞬时功率就会是 瓦特。
下面的时间平均给出了信号 :
注意平稳过程有可能功率有限但能量无限。毕竟,能量是功率的积分,而平稳信号持续无限长时间。这就是在这些情况下不能使用上面定义的能量谱密度的原因。
在分析信号 ] 把信号积分的截短傅里叶变换 是复值函数时为 功率谱密度。
给定频带 上的截短傅里叶变换不是通过 趋近于无穷的极限计算的。这导致光谱覆盖率和分辨率降低,因为不会采样小于 的频率,而 的整数倍频率的结果不是独立的。
:上面的定理在离散情况下也是成立的。另外的一个结论是功率谱密度下总的功率与对应的总的平均信号功率相等,它是逐渐趋近于零的自相关函数。
信号功率谱的概念和应用是电子工程的基础,尤其是在电子通信系统中,例如无线电和微波通信、雷达以及相关系统。人们已经花费了很大的精力和大量的金钱投入到开发、生产“频谱分析仪”这种电子设备,用来帮助电子工程师、技术人员、技工观察、测量电子信号的功率谱。频谱分析仪的价格根据带宽和精度的不同而不同,质量最好的仪器的价格超过 100,000 美元。
光源的频谱是每个频率携带的功率或者光源中“颜色”的度量。光谱通常是沿着可见光在波长空间而不是频率空间测量的不同点(通常是 31 个点)进行测量,它不是严格意义上的谱密度。一些分光光度计能够分辨高达 1 到 2 纳米 的增量精度,测量值用来计算其它的规格然后绘制出来显示光源的频谱属性。这对于分析特定光源的颜色特性来说是一个非常有用的工具。