首页 >
渐开线
✍ dations ◷ 2025-04-03 18:34:10 #渐开线
渐伸线(involute)(或称渐开线(evolvent))和渐屈线(evolute)是曲线的微分几何上互为表里的概念。若曲线A是曲线B的渐伸线,曲线B是曲线A的渐屈线。在曲线上选一定点S。有一动点P由S出发沿曲线移动,选在P的切线上的Q,使得曲线长SP 和直线段长PQ 相同。渐伸线就是Q的轨迹。若曲线B有参数方程
r
:
R
→
R
n
{displaystyle r:mathbb {R} to mathbb {R} ^{n}}
,其中
|
r
′
(
s
)
|
=
1
{displaystyle |r^{prime }(s)|=1}
,曲线A的方程为
t
↦
r
(
t
)
−
t
r
′
(
t
)
{displaystyle tmapsto r(t)-tr^{prime }(t)}
。曲线的渐屈线是该曲线每点的曲率中心的集。若该曲线有参数方程
r
:
R
→
R
n
{displaystyle r:mathbb {R} to mathbb {R} ^{n}}
(
|
r
′
(
s
)
|
=
1
{displaystyle |r^{prime }(s)|=1}
),则其渐屈线为每条曲线可有无穷多条渐伸线,但只有一条渐屈线。渐开线方程曲线的参数化定义的函数( x(t) , y(t) ) 是:X
[
x
,
y
]
=
x
−
x
′
∫
a
t
x
′
2
+
y
′
2
d
t
x
′
2
+
y
′
2
{displaystyle X=x-{frac {x'int _{a}^{t}{sqrt {x'^{2}+y'^{2}}},dt}{sqrt {x'^{2}+y'^{2}}}}}
Y
[
x
,
y
]
=
y
−
y
′
∫
a
t
x
′
2
+
y
′
2
d
t
x
′
2
+
y
′
2
{displaystyle Y=y-{frac {y'int _{a}^{t}{sqrt {x'^{2}+y'^{2}}},dt}{sqrt {x'^{2}+y'^{2}}}}}圆的渐伸线会形成一个类似阿基米德螺线的图形.其中
a
{displaystyle ,a}
是圆的半径,
t
{displaystyle ,t}
为参数其中
a
{displaystyle ,a}
是圆的半径
α
{displaystyle ,alpha }
为参数通常,一个圆的渐开线常被写成写成:欧拉建议使用圆的渐开线作为齿轮的形状, 这个设计普遍存在于目前使用,称为渐开线齿轮。一个悬链线的渐开线 会通过此悬链线的顶点 ,形成曳物线。 在笛卡儿坐标系中,一个悬链线的渐开线的参数方程可以写成:x
=
t
−
t
a
n
h
(
t
)
{displaystyle x=t-mathrm {tanh} (t),}y
=
s
e
c
h
(
t
)
{displaystyle y=mathrm {sech} (t),}其中t 是参数,而sech是双曲正割函数(1/cosh(x))衍生用
r
(
s
)
=
(
sinh
−
1
(
s
)
,
cosh
(
sinh
−
1
(
s
)
)
)
{displaystyle r(s)=(sinh ^{-1}(s),cosh(sinh ^{-1}(s))),}我们得到
r
′
(
s
)
=
(
1
,
s
)
/
1
+
s
2
{displaystyle r^{prime }(s)=(1,s)/{sqrt {1+s^{2}}},}且
r
(
t
)
−
t
r
′
(
t
)
=
(
sinh
−
1
(
t
)
−
t
/
1
+
t
2
,
1
/
1
+
t
2
)
{displaystyle r(t)-tr^{prime }(t)=(sinh ^{-1}(t)-t/{sqrt {1+t^{2}}},1/{sqrt {1+t^{2}}})}
.替代成
t
=
1
−
y
2
/
y
{displaystyle t={sqrt {1-y^{2}}}/y}可得到
(
s
e
c
h
−
1
(
y
)
−
1
−
y
2
,
y
)
{displaystyle ({rm {sech}}^{-1}(y)-{sqrt {1-y^{2}}},y)}
.一个 摆线的渐开线是另一个与它 全等的摆线 在笛卡儿坐标系中,一个摆线的渐开线的参数方程可以写成:其中 t 是角度, r 是 半径
相关
- 安理会常任理事国联合国安全理事会常任理事国是联合国安全理事会中的常任成员(俗称五常),五个创始成员国是二战期间同盟国中的五大国。其中,中国和俄罗斯的代表政权曾有所改变。中国原由中华民国
- 桑贾尔阿齐兹·桑贾尔(土耳其语:Aziz Sançar,1946年9月8日-),土耳其人,具有土耳其美国双重国籍。生物化学家和分子生物学家,专门从事DNA修复、细胞周期检查点、生物钟方面的研究。他是土
- 柚子胡椒柚子胡椒(日语:柚子胡椒 / ゆずこしょう、ゆずごしょう),是一种日本九州地方的调味料。一般制作的材料包括罗汉橙(日语称“柚子”)的皮、青辣椒和盐。名称中的“胡椒”指的是辣椒(C
- 图兰主义图兰主义,是十九世纪在欧洲萌生的政治理念,指在成立由芬兰及匈牙利,一直延伸至日本东北亚地区的民族政治联盟。这个政治理念后来在整个东欧,远至当时作为列强之一的日本帝国和世
- 鲍里斯·巴顿鲍里斯·叶夫根诺维奇·巴顿(乌克兰语:Борис Євгенович Патон,1918年11月27日-),又译鲍里斯·帕通,是乌克兰的焊接技术专家,自1962年起一直担任乌克兰国家科学院
- 帕凡舞帕凡舞(Pavane,中文也有译作“孔雀舞”)是一种偶数类拍子,简单的庄重的慢步舞,通常伴有伽利阿德舞。在16,17世纪欧洲达到全盛,当时帕凡舞是身份的象征。但1636年后这种社交舞就完
- 五溴化磷五溴化磷是一种活泼的黄色固体,化学式为PBr5,固态时它是离子晶体PBr4+Br−,但在气态时完全分解成PBr3和Br2。这时将它快速冷却到15K可以产生离子化合物+-。在有机化学中,可以用
- 朝鲜英祖朝鲜英祖(朝鲜语:조선 영조/朝鮮英祖 Joseon Yeongjo;1694年10月31日-1776年4月22日),名李昑(朝鲜语:이금/李昑 Yi Geum),幼名禧寿,字光叔,号养性轩。是朝鲜王朝的第21代君主,在位时期为1
- 白眼白眼是指眼珠向上,让眼白露出的表情。用来表示鄙视或忽视。“白眼”是瞧不起人的意思。由于“白鸽眼”一词亦有瞧不起人的意思,有人以为“白眼”是“白鸽眼”的简称,其实两个词
- 卡尔斯鲁厄会议卡尔斯鲁厄会议是1860年9月3日-9月6日在德国工业城市卡尔斯鲁厄的博物馆大厅召开的一次国际化学科学会议,是历史上第一次国际化学科学会议,也是世界上第一次国际科学会议,在化