渐开线

✍ dations ◷ 2025-07-19 03:32:00 #渐开线
渐伸线(involute)(或称渐开线(evolvent))和渐屈线(evolute)是曲线的微分几何上互为表里的概念。若曲线A是曲线B的渐伸线,曲线B是曲线A的渐屈线。在曲线上选一定点S。有一动点P由S出发沿曲线移动,选在P的切线上的Q,使得曲线长SP 和直线段长PQ 相同。渐伸线就是Q的轨迹。若曲线B有参数方程 r : R → R n {displaystyle r:mathbb {R} to mathbb {R} ^{n}} ,其中 | r ′ ( s ) | = 1 {displaystyle |r^{prime }(s)|=1} ,曲线A的方程为 t ↦ r ( t ) − t r ′ ( t ) {displaystyle tmapsto r(t)-tr^{prime }(t)} 。曲线的渐屈线是该曲线每点的曲率中心的集。若该曲线有参数方程 r : R → R n {displaystyle r:mathbb {R} to mathbb {R} ^{n}} ( | r ′ ( s ) | = 1 {displaystyle |r^{prime }(s)|=1} ),则其渐屈线为每条曲线可有无穷多条渐伸线,但只有一条渐屈线。渐开线方程曲线的参数化定义的函数( x(t) , y(t) ) 是:X [ x , y ] = x − x ′ ∫ a t x ′ 2 + y ′ 2 d t x ′ 2 + y ′ 2 {displaystyle X=x-{frac {x'int _{a}^{t}{sqrt {x'^{2}+y'^{2}}},dt}{sqrt {x'^{2}+y'^{2}}}}} Y [ x , y ] = y − y ′ ∫ a t x ′ 2 + y ′ 2 d t x ′ 2 + y ′ 2 {displaystyle Y=y-{frac {y'int _{a}^{t}{sqrt {x'^{2}+y'^{2}}},dt}{sqrt {x'^{2}+y'^{2}}}}}圆的渐伸线会形成一个类似阿基米德螺线的图形.其中 a {displaystyle ,a} 是圆的半径, t {displaystyle ,t} 为参数其中 a {displaystyle ,a} 是圆的半径 α {displaystyle ,alpha } 为参数通常,一个圆的渐开线常被写成写成:欧拉建议使用圆的渐开线作为齿轮的形状, 这个设计普遍存在于目前使用,称为渐开线齿轮。一个悬链线的渐开线 会通过此悬链线的顶点 ,形成曳物线。 在笛卡儿坐标系中,一个悬链线的渐开线的参数方程可以写成:x = t − t a n h ( t ) {displaystyle x=t-mathrm {tanh} (t),}y = s e c h ( t ) {displaystyle y=mathrm {sech} (t),}其中t 是参数,而sech是双曲正割函数(1/cosh(x))衍生用 r ( s ) = ( sinh − 1 ⁡ ( s ) , cosh ⁡ ( sinh − 1 ⁡ ( s ) ) ) {displaystyle r(s)=(sinh ^{-1}(s),cosh(sinh ^{-1}(s))),}我们得到 r ′ ( s ) = ( 1 , s ) / 1 + s 2 {displaystyle r^{prime }(s)=(1,s)/{sqrt {1+s^{2}}},}且 r ( t ) − t r ′ ( t ) = ( sinh − 1 ⁡ ( t ) − t / 1 + t 2 , 1 / 1 + t 2 ) {displaystyle r(t)-tr^{prime }(t)=(sinh ^{-1}(t)-t/{sqrt {1+t^{2}}},1/{sqrt {1+t^{2}}})} .替代成 t = 1 − y 2 / y {displaystyle t={sqrt {1-y^{2}}}/y}可得到 ( s e c h − 1 ( y ) − 1 − y 2 , y ) {displaystyle ({rm {sech}}^{-1}(y)-{sqrt {1-y^{2}}},y)} .一个 摆线的渐开线是另一个与它 全等的摆线 在笛卡儿坐标系中,一个摆线的渐开线的参数方程可以写成:其中 t 是角度, r 是 半径

相关

  • 高加索地区高加索(格鲁吉亚语:კავკასია;车臣语、俄语:Кавказ)是位于西亚及东欧交界处,黑海、里海之间高加索山脉的地区,总面积约44万平方公里。该地名根据古罗马学者老普林尼著
  • BNA阿根廷“马里亚诺·莫雷诺”国家图书馆(西班牙语:Biblioteca Nacional "Mariano Moreno" de la República Argentina),是阿根廷的国家图书馆,同时也是阿根廷最大的图书馆,图书馆
  • 基督教恶魔学中的性在苏美尔、巴比伦人、亚述人与犹太人的信仰中,恶魔有男女性别之分。犹太人的恶魔大多是男性,不过也有如莉莉丝般的女性恶魔存在。在基督教恶魔学和神学中恶魔的性别与性倾向存
  • 司法精神病学司法精神医学(英语:Forensic psychiatry),是精神病学的一个分支,和犯罪学关系密切。该学科将法律同神经病学联系在一起。司法心理学家会将心理学相关的证据(如确定当事人是否适合
  • 以人名命名的国际单位制单位以科学家命名的国际单位列表列出由国际度量衡委员会指定在其领域有突出贡献科学家的名字命名的国际单位。国际单位制是当今应用最广泛的测量单位系统,目前共有7种基本单位,22
  • 硝化细菌硝化细菌(英语:nitrifying bacteria)是一群好氧的化能自养生物之统称,细菌能通过食用无机氮化合物生长。硝化细菌以二氧化碳为碳源,通过代谢将氨或铵盐氧化成硝酸盐。硝化细菌可
  • 帚虫动物帚虫动物门(学名:Phoronida)是动物界的一个小门,当中的动物为滤食性,以由几丁质组成的小管支撑。目前仅存2个属,10几个种,全部都是海洋底栖动物,能在南冰洋外的各大洋中约四百米深的
  • 育碧育碧娱乐公司(英语:Ubisoft Entertainment SA),2003年前名为“育碧娱乐软件”(Ubi Soft Entertainment Software),简称“育碧”(Ubisoft),是一家总部设于法国雷恩的电子游戏开发商和发
  • 1284年
  • 拉文斯布吕克集中营纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部