复数

✍ dations ◷ 2025-01-23 03:11:45 #复数
N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数素数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }复数,为实数的延伸,它使任一多项式方程都有根。复数当中有个“虚数单位” i {displaystyle i} ,它是 − 1 {displaystyle -1} 的一个平方根,即 i 2 = − 1 {displaystyle {{i}^{2}}=-1} 。任一复数都可表达为 x + y i {displaystyle x+yi} ,其中 x {displaystyle x} 及 y {displaystyle y} 皆为实数,分别称为复数之“实部”和“虚部”。复数的发现源于三次方程的根的表达式。数学上,“复”字表明所讨论的数域为复数,如复矩阵、复变函数等。最早有关负数方根的文献出于公元1世纪希腊数学家希罗,他考虑的是平顶金字塔不可能问题。16世纪意大利数学家(请参看塔塔利亚和卡尔达诺)得出一元三次和四次方程的根的表达式,并发现即使只考虑实数根,仍不可避免面对负数方根。17世纪笛卡尔称负数方根为虚数,“子虚乌有的数”,表达对此的无奈和不忿。18世纪初棣莫弗及欧拉大力推动复数的接受。1730年,棣莫弗提出棣莫弗公式:而欧拉则在1748年提出分析学中的欧拉公式:18世纪末,复数渐渐被大多数人接受,当时卡斯帕尔·韦塞尔提出复数可看作平面上的一点。数年后,高斯再提出此观点并大力推广,复数的研究开始高速发展。诧异的是,早于1685年约翰·沃利斯已经在De Algebra tractatus提出此一观点。卡斯帕尔·韦塞尔的文章发表在1799年的Proceedings of the Copenhagen Academy上,以当今标准来看,也是相当清楚和完备。他又考虑球体,得出四元数并以此提出完备的球面三角学理论。1804年,Abbé Buée亦独立地提出与沃利斯相似的观点,即以 ± − 1 {displaystyle pm {sqrt {-1}}} 来表示平面上与实轴垂直的单位线段。1806年,Buée的文章正式刊出,同年让-罗贝尔·阿尔冈亦发表同类文章,而阿冈的复平面成了标准。1831年高斯认为复数不够普及,次年他发表了一篇备忘录,奠定复数在数学的地位。柯西及阿贝尔的努力,扫除了复数使用的最后顾忌,后者更是首位以复数研究著名的。复数吸引了著名数学家的注意,包括库默尔(1844年)、克罗内克(1845年)、Scheffler(1845年、1851年、1880年)、Bellavitis(1835年、1852年)、乔治·皮科克(1845年)及德·摩根(1849年)。莫比乌斯发表了大量有关复数几何的短文,约翰·彼得·狄利克雷将很多实数概念,例如素数,推广至复数。费迪南·艾森斯坦研究 a + b j {displaystyle a+bj} ,其中 j {displaystyle j} 是 x 3 − 1 = 0 {displaystyle x^{3}-1=0} 的复根。其他如 x k − 1 = 0 {displaystyle x^{k}-1=0} ( k {displaystyle k} 是素数)亦有考虑。类以推广的先锋为库默尔的完美数理论,经由菲利克斯·克莱因(1893年)以几何角度加以简化。伽罗华其后提出更一般的推广,解决了五次以上多项式的根不能表达问题。尽管可以使用其他表示法,复数通常写为如下形式:这里的 a {displaystyle a} 和 b {displaystyle b} 是实数,而i是虚数单位,它有着性质 i 2 = − 1 {displaystyle {{i}^{2}}=-1} 。实数 a {displaystyle a} 叫做复数的实部,而实数 b {displaystyle b} 叫做复数的虚部。实数可以被认为是虚部为零的复数;就是说实数 a {displaystyle a} 等价于复数 a + 0 i {displaystyle a+0i} 。实部为零且虚部不为零的复数也被称作“纯虚数”;而实部不为零且虚部也不为零的复数也被称作“非纯虚数”或“杂虚数”。例如, 3 + 2 i {displaystyle 3+2i} 是复数,它的实部为3虚部为2。如果 z = a + i b {displaystyle z=a+ib} ,则实部( a {displaystyle a} )被指示为 Re ⁡ ( z ) {displaystyle operatorname {Re} (z)} 或 ℜ ( z ) {displaystyle Re (z)} ,而虚部( b {displaystyle b} )被指示为 Im ⁡ ( z ) {displaystyle operatorname {Im} (z)} 或 ℑ ( z ) {displaystyle Im (z)} 。在某些领域(特别是电子工程,这里的i是电流的符号)中,虚部 i {displaystyle i} 被替代写为 j {displaystyle j} ,所以复数有时写为 a + j b {displaystyle a+jb} 。所有复数的集合通常指示为 C {displaystyle C} ,或者用黑板粗体(英语:Blackboard bold)写为 C {displaystyle mathbb {C} } 。实数 R {displaystyle mathbb {R} } 可以被当作 C {displaystyle mathbb {C} } 的子集,通过把实数的所有成员当作复数: a = a + 0 i {displaystyle a=a+0i} 。复数中的虚数是无法比较大小的,即两个虚数只有相等和不等两种等量关系。两个复数是相等的,当且仅当它们的实部是相等的并且它们的虚部是相等的。就是说,设 a {displaystyle a} , b {displaystyle b} , c {displaystyle c} , d {displaystyle d} 为实数,则 a + b i = c + d i {displaystyle a+bi=c+di} 当且仅当 a = c {displaystyle a=c} 并且 b = d {displaystyle b=d} 。通过形式上应用代数的结合律、交换律和分配律,再加上等式 i 2 = − 1 {displaystyle {{i}^{2}}=-1} ,定义复数的加法、减法、乘法和除法:复数可定义为实数 a , b {displaystyle a,b} 组成的有序对,而其相关之和及积为:复数数系是一个域,复数域常以 C {displaystyle mathbb {C} } 来表示。一个实数 a {displaystyle a} 等同于复数 ( a , 0 ) {displaystyle (a,0)} ,故实数域为复数域的子域。虚数单位 i {displaystyle i} 就是复数 ( 0 , 1 ) {displaystyle (0,1)} 。此外,还有:复数域亦可定为代数数的拓扑闭包或实数域的代数闭包。先把坐标轴画出来,横的叫实轴,竖的叫虚轴,然后确定0的位置, z = a + b i {displaystyle z=a+bi} 可以用二维空间来表示出来。 复数 z {displaystyle z} 可以被看作在被称为阿甘得图(得名于让-罗贝尔·阿冈,也叫做高斯平面)的二维笛卡尔坐标系内的一个点或位置向量。这个点也就是这个复数 z {displaystyle z} 可以用笛卡尔(直角)坐标指定。复数的笛卡尔坐标是实部 x = ℜ z {displaystyle x=Re z} 和虚部 y = ℑ z {displaystyle y=Im z} 。复数的笛卡尔坐标表示叫做复数的“笛卡尔形式”、“直角形式”或“代数形式”。z = r e i ϕ {displaystyle z=re^{iphi }} ,则 | z | = r {displaystyle |z|=r} 是 z {displaystyle z} 的“绝对值”(“模”、“幅值”)。如果 z = a + b i {displaystyle z=a+bi} ,则 | z | = a 2 + b 2 {displaystyle |z|={sqrt {a^{2}+b^{2}}}} .对所有 z {displaystyle z} 及 w {displaystyle w} ,有当定义了距离 d ( z , w ) = | z − w | {displaystyle d(z,w)=left|z-wright|} ,复数域便成了度量空间,我们亦可谈极限和连续。加法、乘法及除法都是连续的运算。z = a + i b {displaystyle z=a+ib} 的共轭复数定义为 z = a − i b {displaystyle z=a-ib} ,记作 z ¯ {displaystyle {overline {z}}} 或 z ∗ {displaystyle z^{*}} 。如图所示, z ¯ {displaystyle {overline {z}}} 是 z {displaystyle z} 关于实数轴的“对称点”。有对于所有代数运算 f {displaystyle f} ,共轭值是可交换的。这即是说 f ( z ¯ ) = f ( z ) ¯ {displaystyle f({overline {z}})={overline {f(z)}}} 。一些非代数运算如正弦“ sin {displaystyle sin } ”亦有此性质。这是由于 i {displaystyle i} 的不明确选择—— x 2 = − 1 {displaystyle x^{2}=-1} 有二解。可是,共轭值是不可微分的(参见全纯函数)。一复数 z = r e i ϕ {displaystyle z=re^{iphi }} 的“幅角”或“相位”为 ϕ {displaystyle phi } 。此值对模 2 π {displaystyle 2pi } 而言是唯一的。对于乘法和除法分别有:考虑一个平面。一个点是原点0。另一个点是单位1。两个点A和B的和是点X = A + B使得顶点0, A, B的三角形和顶点A, B, X的三角形是全等的。两个点A和B的积是点X = AB使得顶点0, 1, A的三角形和顶点0, B, X的三角形是相似的。点A的共轭复数是点X = A*使得顶点0, 1, A的三角形和顶点0, 1, X的三角形相互是镜像。作为替代,复数 z {displaystyle z} 可以用极坐标来指定。极坐标是由叫做绝对值或模的 r = | z | ≥ 0 {displaystyle r=leftvert zrightvert geq 0} 和叫做 z {displaystyle z} 的辐角的 φ = arg ⁡ z {displaystyle varphi =arg z} 组成。对于 r = 0 {displaystyle r=0} ,任何值的 φ {displaystyle varphi } 都描述同一个数。要得到唯一的表示,常规的选择是设置 arg ⁡ 0 = 0 {displaystyle arg 0=0} 。对于 r > 0 {displaystyle r>0} 辐角 φ {displaystyle varphi } 模以 2 π {displaystyle 2pi } 后是唯一的;就是说,如果复数辐角的两个值只相差精确的 2 π {displaystyle 2pi } 的整数倍数,则它们被认为是等价的。要得到唯一表示,常规的选择是限制 φ {displaystyle varphi } 在区间 ( − π , π ] {displaystyle (-pi ,pi ]} 内,就是 − π < φ ≤ π {displaystyle -pi <varphi leq pi } 。复数的极坐标表示叫做复数的“极坐标形式”。前面的公式要求非常繁杂的情况区分。但是很多编程语言提供了经常叫做atan2一个变体的反正切函数来处理这些细节。使用反余弦函数的公式要求更少的情况区分:极坐标形式的符号被叫做“三角形式”。有时使用符号cis φ简写cosφ + isinφ。 使用欧拉公式还可以写为这叫做“指数形式”。在极坐标形式下乘法、除法、指数和开方根要比笛卡尔形式下容易许多。使用三角恒等式得到和依据棣莫弗定理做整数幂的指数运算,任意复数幂的指数运算在条目指数函数中讨论。两个复数的加法只是两个向量的向量加法,乘以一个固定复数的可以被看作同时旋转和伸缩。乘以 i {displaystyle i} 对应于一个逆时针旋转90 度( π 2 {displaystyle {frac {pi }{2}}} 弧度)。方程 i 2 = − 1 {displaystyle i^{2}=-1} 的几何意义是顺序的两个90度旋转导致一个180度( π {displaystyle pi } 弧度)旋转。甚至算术中的 ( − 1 ) × ( − 1 ) = + 1 {displaystyle (-1)times (-1)=+1} 都可以被在几何上被理解为两个180度旋转的组合。任何数的所有方根,实数或复数的,都可以用简单的算法找到。 n {displaystyle n} 次方根给出为对于 k = 0 , 1 , 2 , … , n − 1 {displaystyle k=0,1,2,ldots ,n-1} ,这里的 r n {displaystyle {sqrt{r}}} 表示 r {displaystyle r} 的主 n {displaystyle n} 次方根。下表给出任何复数 a , b , c {displaystyle a,b,c} 的加法和乘法的基本性质。这是个实用价值不大,但具数学意义的表达式,是将复数看作能旋转及缩放二维位置矢量的2×2实数矩阵,即是其中 a {displaystyle a} 及 b {displaystyle b} 为实数。可算出此类矩阵的和、积及乘法逆都是此类矩阵。此外即实数1对应着单位矩阵而虚数单位 i {displaystyle i} 对应着此矩阵令平面作逆时钟90度旋转,它的平方就是-1。复数的绝对值就是行列式的平方根。这些矩阵对应相应的平面变换,其旋转角度等于复数的遍角,改变比例等于复数的绝对值。复数的轭就是矩阵的转置。若矩阵中的 a {displaystyle a} 和 b {displaystyle b} 本来就是复数,则构成的代数便是四元数。由此,矩阵代表法可看成代数的凯莱-迪克森结构法。C {displaystyle mathbb {C} } 可以视作二维实线性空间。不同于实数域,复数域上不可能有与其算术相容的全序: C {displaystyle mathbb {C} } 并非有序域。满足 p ( z ) = 0 {displaystyle p(z)=0} 的复数z是多项式 p {displaystyle p} 的“根”。代数基本定理指出,所有 n {displaystyle n} 次多项式,不管实数系数抑或复数系数的,都刚好有 n {displaystyle n} 个复数根( k {displaystyle k} 重根按 k {displaystyle k} 个计算)。这定理等价于复数域是代数闭域。事实上,复数域是实数域的代数闭包。它是多项式环 R [ X ] {displaystyle mathbb {R} } 经由理想 ⟨ X 2 + 1 ⟩ {displaystyle leftlangle X^{2}+1rightrangle } 显生出的商环:这是一个域因为 X 2 + 1 {displaystyle X^{2}+1} 为不可约多项式,而 X {displaystyle X} 在商环内对应着虚数单位 i {displaystyle i} 。复数域 C {displaystyle mathbb {C} } 唯一(就域同构来说)的域拥有三项代数特征:而然, C {displaystyle mathbb {C} } 包含很多与 C {displaystyle mathbb {C} } 同构的子域。在 C {displaystyle mathbb {C} } 上不可能建立与其加法及乘法相容之全序关系,即不存在一全序 ⪯ {displaystyle preceq } 使得对于任意复数 z 1 , z 2 {displaystyle z_{1},z_{2}} ,有 0 ⪯ z 1 , z 2 ⇒ 0 ⪯ z 1 + z 2 , 0 ⪯ z 1 z 2 {displaystyle 0preceq z_{1},z_{2}Rightarrow 0preceq z_{1}+z_{2},0preceq z_{1}z_{2}} 。计算一个实数的复数幂是可以的。 a z {displaystyle a^{z}} 可以定义为 e z ⋅ ln ⁡ ( a ) {displaystyle e^{zcdot ln(a)}} 。研究复变函数的理论称为复分析。它在应用数学和其他数学分支上都有许多实际应用。实分析和数论的结果,最自然的证明经常是以复分析的技巧完成(例子可见素数定理)。复变函数的图像是四维的,所以不像实变函数般可以用平面图像表示。要表示复变函数的图像,可以用有颜色的三维图像表达四维资讯,或者以动画表示函数对复平面的动态变换。在系统分析中,系统常常通过拉普拉斯变换从时域变换到频域。因此可在复平面上分析系统的极点和零点。分析系统稳定性的根轨迹法、奈奎斯特图法和尼科尔斯图法都是在复平面上进行的。无论系统极点和零点在左半平面还是右半平面,根轨迹法都很重要。如果系统极点如果稳定系统的全部零点都位于左半平面,则这是个最小相位系统。如果系统的极点和零点关于虚轴对称,则这是全通系统。信号分析和其他领域使用复数可以方便的表示周期信号。模值 | z | {displaystyle leftvert zrightvert } 表示信号的幅度,辐角 arg ⁡ z {displaystyle arg z} 表示给定频率的正弦波的相位。利用傅里叶变换可将实信号表示成一系列周期函数的和。这些周期函数通常用形式如下的复函数的实部表示:其中 ω {displaystyle omega } 对应角频率,复数 z {displaystyle z} 包含了幅度和相位的信息。电路分析中,引入电容、电感与频率有关的虚部可以方便的将电压、电流的关系用简单的线性方程表示并求解。(有时用字母 j {displaystyle j} 作为虚数单位,以免与电流符号i混淆。)在应用层面,复分析常用以计算某些实值的反常积分,借由复值函数得出。方法有多种,见围道积分方法(英语:Methods of contour integration)。量子力学中复数是十分重要的,因其理论是建基于复数域上无限维的希尔伯特空间。如将时间变量视为虚数的话便可简化一些狭义和广义相对论中的时空度量 (Metric)方程。实际应用中,求解给定差分方程模型的系统,通常首先找出线性差分方程对应的特征方程的所有复特征根r,再将系统以形为f(t)= ert的基函数的线性组合表示。复函数于流体力学中可描述二维势流。一些分形如曼德博集合和茹利亚集(Julia set)是建基于复平面上的点的。复数的平方根是可以计算的。其公式为 x + i y = | x + i y | + x 2 ± i | x + i y | − x 2 {displaystyle {sqrt {x+iy}}={sqrt {frac {left|x+iyright|+x}{2}}}pm i{sqrt {frac {left|x+iyright|-x}{2}}}} 。

相关

  • 匿名戒酒会匿名戒酒会,或称戒酒无名会(英语:Alcoholics Anonymous,简称AA)是一个国际性互助戒酒组织,在1935年6月10日,由美国人比尔·威尔逊(Bill Wilson)和医生鲍勃·史密斯在美国俄亥俄州阿
  • 生物膜法生物膜法是一种处理污水的好氧生物方法,是一大类生物处理方法的统称。共同的特点是微生物附着在作为介质的滤料表面,生长成为一层由微生物构成的膜。污水与之接触后,其中的溶解
  • 以色列地以色列地,亦即是迦南地,大致对应于由南地中海东部包围的区域的名字。圣经中,宗教和历史的术语包括迦南地,应许之地,圣地,相当于今日的巴勒斯坦地区。这一领土的界限的定义圣经章节
  • 数论数论(梵语:सांख्य,转写:sāṅkhya或sāṃkhya;字面意思是“计数”,音译为僧佉、僧祇)印度哲学的一个派别,被认为是最古老和最重要的流派之一。佛教称其为“迦毗罗论”或“雨众
  • 照相排版照相排版(简称照排,英语称phototypesetting, photocomposition)是指,用照相排版机将文字等内容制作到相纸或胶片上,或者是制作照片制版用的制版工序。根据使用的机械,可以分成手工
  • 性交体位行房姿势、性姿势、性体位或性交体位,泛指参与性行为者所采行的姿势。《红楼梦》第23回中贾琏要求王熙凤改变一些新奇的姿势,“只是昨儿晚上,我不过是要改个样儿,你就扭手扭脚的
  • 海带Saccharina japonica (J.E. Areschoug) C.E. Lane, C. Mayes, Druehl & G.W. Saunders广泛而言,海带可以指所有生物分类上为海带目(Laminariales)的物种。狭义来说,海带可限指是
  • 齿部,为汉字索引中的部首之一,康熙字典214个部首中的第二百一十一个(十五划唯一的部首)。就正体中文中,齿部归于十五划部首,而简体中文则归在八划。齿部只以左方、下方为部字。且
  • CPd有机钯化学是有机金属化学的一个分支,是主要研究有机钯化合物与其反应的学科。钯常用于烯烃或炔烃发生氢化反应的催化剂。这类反应过程通常都涉及了钯-碳共价键的形成。钯化合
  • 动质体锥体虫Trypanosomatida Bodonida动质体(Kinetoplastid)是一种附有鞭毛的原生动物,包含某些能使人类或其他动物发生严重疾病的寄生虫。这类生物具有许多不同型态,生活于水中或泥