首页 >
空集
✍ dations ◷ 2025-04-25 13:17:39 #空集
空集是不含任何元素的集合,数学符号为
∅
{displaystyle emptyset }
、
∅
{displaystyle varnothing }
或
{
}
{displaystyle {;}}
。空集的标准符号由尼古拉·布尔巴基小组创造,写作∅(
∅
{displaystyle varnothing }
),首先见于他们在1939年出版的《数学原本卷一:集合论》(Éléments de mathématique. Livre 1. Théorie des ensembles. Fascicule de résultats)。这符号也可写作
∅
{displaystyle emptyset }
,有时候采用近似字符“.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif}Ø”,也可以使用大括号
{
}
{displaystyle {;}}
表示。这符号源自北欧语言的拉丁字母“Ø”,但常被误会为希腊字母“φ”。(φ有两个写法:小写的
φ
{displaystyle varphi }
和缩小了的大写
ϕ
{displaystyle phi ,}
,后者常被误用为空集符号。
ϕ
{displaystyle phi ,}
的中间为一长竖,中间的圈也较小,与
∅
{displaystyle varnothing }
的斜线和大圆不同。)。提出用北欧字母为符号的,是布尔巴基小组成员安德烈·韦伊。他在自传写道:空集符号∅的Unicode编码为U+2205,TeX代码是emptyset或varnothing(后者是AMS符号,很多人较喜欢后者的字形)。(这里采用数学符号)。集合论中,两个集合相等,若它们有相同的元素;那么仅可能有一个集合是没有元素的,即空集是唯一的。考虑空集为实数线(或任意拓扑空间)的子集,空集既是开集、又是闭集。空集的边界点集合是空集,是它的子集,因此空集是闭集。空集的内点集合也是空集,是它的子集,因此空集是开集。另外,空集是紧致集合,因为凡有限集合都是紧致的。空集的闭包是空集。根据定义,空集有0个元素,或者称其势为0。然而,这两者的关系可能更进一步:在标准的自然数的集合论定义中,0被定义为空集。空集不是无;它是内部没有元素的集合,而集合就是有。这通常是初学者的一个难点。可以将集合想象成一个装有其元素的袋子──袋子可能是空的,但袋子本身确实是存在的。有些人会想不通上述第一条性质,即空集是任意集合
A
{displaystyle A}
的子集。按照子集的定义,这条性质是说
{
}
{displaystyle left{right}}
的每个元素x都属于
A
{displaystyle A}
。若这条性质不为真,那.mw-parser-output .serif{font-family:Times,serif}{}中至少有一个元素不在
A
{displaystyle A}
中。由于
{
}
{displaystyle left{right}}
中没有元素,也就没有
{
}
{displaystyle left{right}}
的元素不属于
A
{displaystyle A}
了,得到
{
}
{displaystyle left{right}}
的每个元素都属于
A
{displaystyle A}
,即
{
}
{displaystyle left{right}}
是
A
{displaystyle A}
的子集。空集(作为集合)上的运算也可能使人迷惑。(这是一种空运算。)
例如:空集元素的和为0,而它们的积为1(见空积)。这可能看上去非常奇怪,空集中没有元素,他们是怎么相加和相乘的呢?
最终,这些运算的结果更多被看成是运算的问题,而不是空集的。比如,可以注意到0是加法的单位元,而1是乘法的单位元。在诸如策梅洛-弗兰克尔集合论的公理化集合论中,空集的存在性是由空集公理确定的。空集的唯一性由外延公理得出。使用分类公理,任何陈述集合存在性的公理将隐含空集公理。例如:若
A
{displaystyle A}
是集合,则分离公理允许构造集合
B
=
{
x
∈
A
|
x
≠
x
}
{displaystyle B=left{xin A|xneq xright}}
,它就可以被定义为空集。若A为集合,则恰好存在一个从
{
}
{displaystyle left{right}}
到
A
{displaystyle A}
的函数
f
{displaystyle f}
,即空函数。故此,空集是集合和函数的范畴的唯一初始对象。空集只能通过一种方式转变为拓扑空间,即通过定义空集为开集;这个空拓扑空间是有连续映射的拓扑空间的范畴的唯一初始对象。尽管空集在数学中是一个标准,并被广泛接受,仍然有人对它表示怀疑。Jonathan Lowe认为,这一概念“无疑是数学历史上的里程碑,……;不需要假设其在计算时的有效性要基于其确实表达了某些对象”,但在另一方面,“我们所知的空集只是它 (1)是个集合,(2)没有元素,(3)在没有元素的集合中唯一。然而,有很多东西‘没有元素’,在集合论角度而言,叫做非集合。为什么它们没有元素是显而易见的,因为它们不是集合。不清楚的是,为什么在集合中,没有元素的集合是唯一的。仅仅通过约束是不可能将这么一个实体变出来的。”在"To be is to be the value of a variable…",Journal of Philosophy,1984(在书Logic, Logic and Logic中再次发表)中,小George Boolos认为许多集合论中的结论,也可以透过对个体进行复数量化(英语:Plural quantification)来得到,所以无需把集合具体化为包含其他实体作为元素的实体。
相关
- 痰痰是指肺及支气管等鼻腔以下的呼吸管道的粘膜所产生的分泌物,用来将包含尘埃、病毒、过敏原等异物排出体外的黏液,也可能是因上呼吸道感染,而经由咳嗽及咳痰所吐出来的黏液。感
- 全身麻醉全身麻醉剂(英语:general anesthetics)是麻醉药中的一类。麻醉药根据作用部位的不同,可分为全身麻醉药(general anesthetics)和局部麻醉药(local anesthetics)。全身麻醉药作用于中
- 氧气中毒氧气中毒(Oxygen toxicity)是指吸入高浓度高压氧气的不良反应,又称氧气毒性症,氧气毒性。这种症状历史上曾称以发现及描述此病症的19世纪研究员命名,其对中枢神经系统的影响称为
- 米诺环素米诺环素又称“二甲胺四环素”或“美满环素”,是一种广谱抗菌的四环素类抗生素。它能与tRNA结合,从而达到抑菌的效果。米诺环素比同类药物具有更广的抗菌谱,具有抑菌活性。因为
- 狼疮性肾炎狼疮肾炎(Lupus nephritis)是红斑性狼疮(SLE)造成的肾脏炎症,属于一种免疫系统的疾病。除了肾脏,SLE也会损害皮肤、关节、神经系统和在体内的几乎任何器官或系统。狼疮的一般
- 世界知识产权组织世界知识产权组织(英语:World Intellectual Property Organization,简称WIPO)是联合国的15个专门机构之一,致力于促进使用和保护人类智能作品的国际组织。总部设在瑞士日内瓦,负责
- PET正电子发射计算机断层扫描(英语:Positron emission tomography,简称PET)是一种核医学临床检查的成像技术。PET技术是当前唯一的用解剖形态方式进行功能、代谢和受体显像的技术,具
- 0号元素无电子0主条目:0号元素的同位素0号元素(英语:Neutronium),有时又被称为中子元素(英语:Neutrium),是指原子中仅含中子,不含质子的一种元素,或纯粹只由中子组成的物质。1926年物理学家安
- 广谱抗生素抗细菌药(英语:antibacterial)也称为“抗细菌剂”,是一类用于抑制细菌生长或杀死细菌的药物。在不引起歧义的情况下,抗细菌药也可简称为“抗菌药”,包括抗生素(英语:antibiotic) 由微
- 希氏脸希波克拉底面容 (拉丁语:facies Hippocratica)是指由于濒临死亡或长期患病、过度排泄、过度饥饿以及类似原因导致的面容改变。"容貌可以被描述如下:鼻子变尖,眼窝深陷,太阳穴下