空集

✍ dations ◷ 2025-06-25 22:11:08 #空集
空集是不含任何元素的集合,数学符号为 ∅ {displaystyle emptyset } 、 ∅ {displaystyle varnothing } 或 { } {displaystyle {;}} 。空集的标准符号由尼古拉·布尔巴基小组创造,写作∅( ∅ {displaystyle varnothing } ),首先见于他们在1939年出版的《数学原本卷一:集合论》(Éléments de mathématique. Livre 1. Théorie des ensembles. Fascicule de résultats)。这符号也可写作 ∅ {displaystyle emptyset } ,有时候采用近似字符“.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif}Ø”,也可以使用大括号 { } {displaystyle {;}} 表示。这符号源自北欧语言的拉丁字母“Ø”,但常被误会为希腊字母“φ”。(φ有两个写法:小写的 φ {displaystyle varphi } 和缩小了的大写 ϕ {displaystyle phi ,} ,后者常被误用为空集符号。 ϕ {displaystyle phi ,} 的中间为一长竖,中间的圈也较小,与 ∅ {displaystyle varnothing } 的斜线和大圆不同。)。提出用北欧字母为符号的,是布尔巴基小组成员安德烈·韦伊。他在自传写道:空集符号∅的Unicode编码为U+2205,TeX代码是emptyset或varnothing(后者是AMS符号,很多人较喜欢后者的字形)。(这里采用数学符号)。集合论中,两个集合相等,若它们有相同的元素;那么仅可能有一个集合是没有元素的,即空集是唯一的。考虑空集为实数线(或任意拓扑空间)的子集,空集既是开集、又是闭集。空集的边界点集合是空集,是它的子集,因此空集是闭集。空集的内点集合也是空集,是它的子集,因此空集是开集。另外,空集是紧致集合,因为凡有限集合都是紧致的。空集的闭包是空集。根据定义,空集有0个元素,或者称其势为0。然而,这两者的关系可能更进一步:在标准的自然数的集合论定义中,0被定义为空集。空集不是无;它是内部没有元素的集合,而集合就是有。这通常是初学者的一个难点。可以将集合想象成一个装有其元素的袋子──袋子可能是空的,但袋子本身确实是存在的。有些人会想不通上述第一条性质,即空集是任意集合 A {displaystyle A} 的子集。按照子集的定义,这条性质是说 { } {displaystyle left{right}} 的每个元素x都属于 A {displaystyle A} 。若这条性质不为真,那.mw-parser-output .serif{font-family:Times,serif}{}中至少有一个元素不在 A {displaystyle A} 中。由于 { } {displaystyle left{right}} 中没有元素,也就没有 { } {displaystyle left{right}} 的元素不属于 A {displaystyle A} 了,得到 { } {displaystyle left{right}} 的每个元素都属于 A {displaystyle A} ,即 { } {displaystyle left{right}} 是 A {displaystyle A} 的子集。空集(作为集合)上的运算也可能使人迷惑。(这是一种空运算。) 例如:空集元素的和为0,而它们的积为1(见空积)。这可能看上去非常奇怪,空集中没有元素,他们是怎么相加和相乘的呢? 最终,这些运算的结果更多被看成是运算的问题,而不是空集的。比如,可以注意到0是加法的单位元,而1是乘法的单位元。在诸如策梅洛-弗兰克尔集合论的公理化集合论中,空集的存在性是由空集公理确定的。空集的唯一性由外延公理得出。使用分类公理,任何陈述集合存在性的公理将隐含空集公理。例如:若 A {displaystyle A} 是集合,则分离公理允许构造集合 B = { x ∈ A | x ≠ x } {displaystyle B=left{xin A|xneq xright}} ,它就可以被定义为空集。若A为集合,则恰好存在一个从 { } {displaystyle left{right}} 到 A {displaystyle A} 的函数 f {displaystyle f} ,即空函数。故此,空集是集合和函数的范畴的唯一初始对象。空集只能通过一种方式转变为拓扑空间,即通过定义空集为开集;这个空拓扑空间是有连续映射的拓扑空间的范畴的唯一初始对象。尽管空集在数学中是一个标准,并被广泛接受,仍然有人对它表示怀疑。Jonathan Lowe认为,这一概念“无疑是数学历史上的里程碑,……;不需要假设其在计算时的有效性要基于其确实表达了某些对象”,但在另一方面,“我们所知的空集只是它 (1)是个集合,(2)没有元素,(3)在没有元素的集合中唯一。然而,有很多东西‘没有元素’,在集合论角度而言,叫做非集合。为什么它们没有元素是显而易见的,因为它们不是集合。不清楚的是,为什么在集合中,没有元素的集合是唯一的。仅仅通过约束是不可能将这么一个实体变出来的。”在"To be is to be the value of a variable…",Journal of Philosophy,1984(在书Logic, Logic and Logic中再次发表)中,小George Boolos认为许多集合论中的结论,也可以透过对个体进行复数量化(英语:Plural quantification)来得到,所以无需把集合具体化为包含其他实体作为元素的实体。

相关

  • 酗酒酗酒(英语:alcoholism),又称酒精使用疾患(alcohol use disorder, AUD)或酒精依赖症候群(alcohol dependence syndrome),其为饮用酒精所致相关问题的广义用语,过去将之分成酒精滥用(英语
  • ACE抑制剂血管紧张肽I转化酶抑制剂(英语:ACE inhibitor,简称为ACEI)是一类抗高血压药。血管紧张素转化酶(ACE)是肾素-血管紧张素-醛固酮(RAA)系统中的一个重要环节,该系统对血压的调节有着及其
  • 城市化率这是一个各国城市化列表。测量城市化程度有两种方法。第一种,城市化人口,用来描述居住在城市区域的人口占总人口的比例,城市区域由各国自行划分。第二种,城市化变动率,用来描述在
  • 结核结核病(Tuberculosis,又称TB)为结核杆菌感染引起的疾病。结核通常造成肺部感染,也会感染身体的其他部分。大多数感染者没有症状,此型态感染称为潜伏结核感染(英语:Latent tuberculo
  • 体征医学征象(英语:Medical sign),(卫生福利部编码指引翻译为:征候),又称体征、病征,医学术语,指在进行身体检查或病理检查时,能够提供医生对医疗进展及疾病状况的迹象及指标,通常是可客观
  • 菌异营菌异养(英语:Myco-heterotrophy)是植物与真菌的一种共生关系,此关系中植物不行光合作用,而是与真菌形成菌根后,透过寄生真菌取得全部或部分的有机养分。菌异养被认为是一种欺诈行
  • 螯合物螯合物(英语:Chelation)是配合物的一种,在螯合物的结构中,一定有一个或多个多齿配体提供多对电子与中心体形成配位键。“螯”指螃蟹的大钳,此名称比喻多齿配体像螃蟹一样用两只大
  • 资源县资源县(邮政式拼音:Tzeyüan)在中国广西壮族自治区东北部、越城岭西麓,是桂林市的市辖县,位于桂林北部,邻接湖南省。是资水的发源地。资源县是广西的林业重点县,面积1961.14平方公
  • 叶夫帕托里亚叶夫帕托里亚(乌克兰语:Євпаторія, 俄语:Евпатория, 克里米亚鞑靼语:Kezlev, 希腊语:Ευπατορία, Κερκινίτις - Eupatoria, Kerkinitis, 土
  • 黑体陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧