空集

✍ dations ◷ 2025-06-04 23:38:34 #空集
空集是不含任何元素的集合,数学符号为 ∅ {displaystyle emptyset } 、 ∅ {displaystyle varnothing } 或 { } {displaystyle {;}} 。空集的标准符号由尼古拉·布尔巴基小组创造,写作∅( ∅ {displaystyle varnothing } ),首先见于他们在1939年出版的《数学原本卷一:集合论》(Éléments de mathématique. Livre 1. Théorie des ensembles. Fascicule de résultats)。这符号也可写作 ∅ {displaystyle emptyset } ,有时候采用近似字符“.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif}Ø”,也可以使用大括号 { } {displaystyle {;}} 表示。这符号源自北欧语言的拉丁字母“Ø”,但常被误会为希腊字母“φ”。(φ有两个写法:小写的 φ {displaystyle varphi } 和缩小了的大写 ϕ {displaystyle phi ,} ,后者常被误用为空集符号。 ϕ {displaystyle phi ,} 的中间为一长竖,中间的圈也较小,与 ∅ {displaystyle varnothing } 的斜线和大圆不同。)。提出用北欧字母为符号的,是布尔巴基小组成员安德烈·韦伊。他在自传写道:空集符号∅的Unicode编码为U+2205,TeX代码是emptyset或varnothing(后者是AMS符号,很多人较喜欢后者的字形)。(这里采用数学符号)。集合论中,两个集合相等,若它们有相同的元素;那么仅可能有一个集合是没有元素的,即空集是唯一的。考虑空集为实数线(或任意拓扑空间)的子集,空集既是开集、又是闭集。空集的边界点集合是空集,是它的子集,因此空集是闭集。空集的内点集合也是空集,是它的子集,因此空集是开集。另外,空集是紧致集合,因为凡有限集合都是紧致的。空集的闭包是空集。根据定义,空集有0个元素,或者称其势为0。然而,这两者的关系可能更进一步:在标准的自然数的集合论定义中,0被定义为空集。空集不是无;它是内部没有元素的集合,而集合就是有。这通常是初学者的一个难点。可以将集合想象成一个装有其元素的袋子──袋子可能是空的,但袋子本身确实是存在的。有些人会想不通上述第一条性质,即空集是任意集合 A {displaystyle A} 的子集。按照子集的定义,这条性质是说 { } {displaystyle left{right}} 的每个元素x都属于 A {displaystyle A} 。若这条性质不为真,那.mw-parser-output .serif{font-family:Times,serif}{}中至少有一个元素不在 A {displaystyle A} 中。由于 { } {displaystyle left{right}} 中没有元素,也就没有 { } {displaystyle left{right}} 的元素不属于 A {displaystyle A} 了,得到 { } {displaystyle left{right}} 的每个元素都属于 A {displaystyle A} ,即 { } {displaystyle left{right}} 是 A {displaystyle A} 的子集。空集(作为集合)上的运算也可能使人迷惑。(这是一种空运算。) 例如:空集元素的和为0,而它们的积为1(见空积)。这可能看上去非常奇怪,空集中没有元素,他们是怎么相加和相乘的呢? 最终,这些运算的结果更多被看成是运算的问题,而不是空集的。比如,可以注意到0是加法的单位元,而1是乘法的单位元。在诸如策梅洛-弗兰克尔集合论的公理化集合论中,空集的存在性是由空集公理确定的。空集的唯一性由外延公理得出。使用分类公理,任何陈述集合存在性的公理将隐含空集公理。例如:若 A {displaystyle A} 是集合,则分离公理允许构造集合 B = { x ∈ A | x ≠ x } {displaystyle B=left{xin A|xneq xright}} ,它就可以被定义为空集。若A为集合,则恰好存在一个从 { } {displaystyle left{right}} 到 A {displaystyle A} 的函数 f {displaystyle f} ,即空函数。故此,空集是集合和函数的范畴的唯一初始对象。空集只能通过一种方式转变为拓扑空间,即通过定义空集为开集;这个空拓扑空间是有连续映射的拓扑空间的范畴的唯一初始对象。尽管空集在数学中是一个标准,并被广泛接受,仍然有人对它表示怀疑。Jonathan Lowe认为,这一概念“无疑是数学历史上的里程碑,……;不需要假设其在计算时的有效性要基于其确实表达了某些对象”,但在另一方面,“我们所知的空集只是它 (1)是个集合,(2)没有元素,(3)在没有元素的集合中唯一。然而,有很多东西‘没有元素’,在集合论角度而言,叫做非集合。为什么它们没有元素是显而易见的,因为它们不是集合。不清楚的是,为什么在集合中,没有元素的集合是唯一的。仅仅通过约束是不可能将这么一个实体变出来的。”在"To be is to be the value of a variable…",Journal of Philosophy,1984(在书Logic, Logic and Logic中再次发表)中,小George Boolos认为许多集合论中的结论,也可以透过对个体进行复数量化(英语:Plural quantification)来得到,所以无需把集合具体化为包含其他实体作为元素的实体。

相关

  • VIAF虚拟国际规范文档(英语:Virtual International Authority File,VIAF)是一个国际性的规范文档。该项目联合了许多国家图书馆,由线上电脑图书馆中心(OCLC)负责运营。此项目最初是为连
  • 生物防治剂生物防治(Biological control)或生物害虫防治(Biological pest control)是病虫害防治的一种方法,使用生物(英语:bioeffector)缓解昆虫、螨虫、野草和病态植物对人类农作物、环境等造
  • 牛津辞典《牛津英语词典》(英语:Oxford English Dictionary,OED)是由牛津大学出版社出版的20卷词典,截至2005年11月30日,该词典收录了301,100主词汇,字母数目达3亿5千万个。词典亦收录了157
  • 中子截面中子截面(英语:Neutron cross-section)常用于核物理学与粒子物理学中,表示入射中子与靶核交互作用的一种带有几率意义的常数。单位以barn表示,等于10−24cm2。中子截面与中子通量
  • 白血症白血病(拉丁语:leukemia,/luːˈkiːmiːə/)是一群癌症种类的统称,英文名称来自于古希腊语,λευκός(leukos,白色)与αἷμα(haima,血液)的组合。 它通常发病于骨髓,造成不正常白血
  • 梅兰妮·克莱因梅兰妮·克莱恩(Melanie Klein,1882年3月30日-1960年9月22日),英国精神分析学家,生于维也纳,主要贡献为对儿童精神分析以及客体关系理论的发展。
  • 巩膜巩膜属于眼球纤维膜,在眼球内,约占眼球纤维膜的5/6,为乳白色不透明的纤维膜,起保护眼球内容物和维持眼球形态的作用。巩膜前缘接角膜缘,后方与视神经的硬膜鞘相延续。巩膜与角膜
  • 切割蛋白酶解或蛋白水解(英语:Proteolysis)是指蛋白质降解为较小的多肽或氨基酸的过程。通常情况下,被水解的都是肽键,且在蛋白酶的作用下进行,因此常用蛋白酶解。但也可能发生分子内
  • iThe Language Instinct: How the Mind Creates Language《语言本能-探索人类语言进化的奥秘》(英语:The Language Instinct: How the Mind Creates Language)是加拿大–美国认知科学家史迪芬·平克于1994年出版的科普书籍,书中平克主张
  • 模糊集模糊集是模糊数学上的一个基本概念,是数学上普通集合的扩展。给定一个论域 U {\displaystyle U} ,那么从