吉布斯采样(英语:Gibbs sampling)是统计学中用于马尔科夫蒙特卡洛(MCMC)的一种算法,用于在难以直接采样时从某一多变量概率分布中近似抽取样本序列。该序列可用于近似联合分布、部分变量的边缘分布或计算积分(如某一变量的期望值)。某些变量可能为已知变量,故对这些变量并不需要采样。
吉布斯采样常用于统计推断(尤其是贝叶斯推断)之中。这是一种随机化算法,与最大期望算法等统计推断中的确定性算法相区别。与其他MCMC算法一样,吉布斯采样从马尔科夫链中抽取样本,可以看作是Metropolis–Hastings算法的特例。
该算法的名称源于约西亚·威拉德·吉布斯,由斯图尔特·杰曼(英语:Stuart Geman)与唐纳德·杰曼(英语:Donald Geman)兄弟于1984年提出。
吉布斯采样适用于条件分布比边缘分布更容易采样的多变量分布。假设我们需要从联合分布 中抽取的个样本。记第个样本为。吉布斯采样的过程则为:
在采样完成后,我们可以用这些样本来近似所有变量的联合分布。如果仅考虑其中部分变量,则可以得到这些变量的边缘分布。此外,我们还可以对所有样本求某一变量的平均值来估计该变量的期望。