角动量算符对易关系

✍ dations ◷ 2025-12-06 17:59:03 #角动量,物理算符,李群表示论

在量子力学中,角动量算符之间的对易关系是基本的对易关系之一。从这些对易关系出发就足以得出关于角动量算符及其本征函数的许多性质,而不需要关心角动量算符在某个表象下的具体表达式。从数学上看,这一套理论实际上是研究与李代数 s u ( 2 ) {\displaystyle {\mathfrak {su}}(2)} 相关的性质。

在三维空间中的角动量算符(经典角动量的量子化)满足下列的基本对易关系式:

式中 ϵ α β γ {\displaystyle \epsilon _{\alpha \beta \gamma }} 是列维-奇维塔符号。

上面的关系式反映了角动量算符的内在性质。反过来,可以直接由这组对易关系式出发,把满足这样性质的算符都称为角动量算符。

若有三个算符

满足对易关系

则称以这三个算符为分量的矢量算符

为一个角动量算符。

这样定义的角动量算符自然地包含了轨道角动量、自旋角动量、总角动量等。

运用叉乘的符号,上面的对易关系式也可以简单表示为:

定义角动量平方算符为

直接计算可以得到:

进一步定义

它们分别称为升算符与降算符,则直接计算可以得到下列关系式:

最后一式中的是反对易子。

由于角动量平方算符与任一分量对易,故它们存在共同的本征函数,记作

使得

且满足正交归一关系:

对于任意一个算符 f,我们可以取矩阵元

对上一小节给出的前三个对易关系式两边分别取矩阵元。

由第一、二式可得:

对第三式取矩阵元,并在其中插入单位分解

得:

再利用 j+j- 互为伴算符,就得到

习惯上取 δ=0,这称为 Condon-Shortle 惯例。取一个本征函数,不断用升算符作用,每次将 m 增加 1,如果这个过程不终止,则上式中的根号内的部分总会变成负数,这与任意态函数的模方为非负数矛盾。因此,上述过程只能在某一步终止,即对于某个 m,根号下的部分变为 0,此时对应的 m 就是 m 的上确界,而 λ=m(m+1)。对降算符也可以进行类似的讨论,最后得到

此外,m 的下确界与 m 的上确界的本征函数间也必须可以通过有限次升降算符的作用联系起来,即

综合起来,就得到量子化条件

上面一小节实际上已经给出了各个角动量算符矩阵元的计算公式,下面是一些具体的例子。

j=0 时的矩阵表示是平凡的。

j=1/2 时的矩阵表示对应着泡利矩阵,

j=1 时的矩阵表示,

相关

  • 奥美拉唑奥美拉唑(Omeprazole),常见商品名Prilosec等。是一种可用于治疗 胃食道逆流、胃及十二指肠溃疡和胃泌素瘤(英语:Zollinger–Ellison syndrome)的口服药物。它同时也用于上消化道出
  • 藩侯藩侯(德语:Markgraf),另译边境伯,是神圣罗马帝国爵位的一种。藩侯的历史可追溯到查理曼时期。查理曼曾将一些边境的重要地区设立设立“马克(英语:March (territory))”(边区,德语:Mark),
  • 穆尔塔图里穆尔塔图里(Multatuli,(1820年3月2日-1887年2月19日))荷兰小说家,散文家。原名爱德华·道维斯·戴克尔(Eduard Douwes Dekker),他曾长期在荷属殖民地政府里任职,根据自己的经历写成了代
  • 毛部毛部,为汉字索引中的部首之一,康熙字典214个部首中的第八十二个(四划的则为第二十二个)。就繁体和简体中文中,毛部归于四划部首。毛部通常是从下、左、右方均可为部字。且无其他
  • 国际地质科学联盟国际地质科学联盟,又译作国际地质科学联合会(International Union of Geological Sciences,IUGS)是一个国际性非政府组织,专注于地质学领域的国际合作。成立于1961年,是国际科学理
  • 猪胰猪胰,又称猪脾,广东称为猪横脷,是指可供食用的家猪胰脏。猪胰位于猪的腹部,与猪肠横连着,好像一条舌头,而广东话称“舌”为“脷”,故得“猪横脷”的别称,与“猪脷”(猪舌)无关。猪胰有
  • 董耐芳董耐芳(1923年10月-2014年3月18日),天津人,中华人民共和国政治人物。曾任教于北京师范大学、天津师范学院、河北师范大学,从事高分析化学工作。担任九三学社河北省委主委。1991年4
  • 到洽到洽,字茂沿,彭城武原(今江苏邳州市西北)人。到溉之弟。宋顺帝升明元年出生,自小以能文出名,十八岁,担任徐州迎西曹行事。谢朓很欣赏到洽,每日与之谈论。武帝尝问待诏丘迟:“到洽何如
  • 安苏玛琳·瑟拉帕萨默莎安苏玛琳·瑟拉帕萨默莎 (泰语:อังศุมาลิน สิรภัทรศักดิ์เมธา,1991年7月13日-)出生于泰国曼谷,是泰国著名的电影演员、电视演员和模特儿。2008年出演
  • 藤原氏藤原氏(Fujiwara)是一个日本贵族的姓氏,早在飞鸟时代已经存在。在平安时代以前,藤原氏的族人均以本姓藤原称呼;而镰仓时代以后除公文书外,多以家名(日语:家名)(如近卫、九条)称呼。藤原