凯莱定理

✍ dations ◷ 2025-11-29 12:44:33 #群论,置换,数学定理

在群论中,凯莱定理,以阿瑟·凯莱命名,声称所有群 同构于在上的对称群的子群。这可以被理解为在的元素上的群作用的一个例子。

集合的排列是任何从到的双射函数;所有这种函数的集合形成了在函数复合下的一个群,叫做“上的对称群”并写为Sym()。

凯莱定理通过把任何群(包括无限群比如(,+))都当作某个底层集合的置换群,把所有群都放在了同一个根基上。因此,对置换群成立的定理对于一般群也成立。

Burnside将其归功于Jordan,但是 Eric Nummela争论说这个定理的名字“凯莱定理”事实上是合适的。凯莱在他最初介绍群概念的1854年论文中证明了定理中的对应是一一对应,但是没能明确的证明它是同态(因此是同构)。但是,Nummela提示大家注意凯莱让当时的数学界知道了这个结果,因此比Jordan要提前了16年。

从初等群论中,知道了对于任何中元素必然有* = ;并通过消除规则知道了* = *当且仅当 = 。所以左乘充当了双射函数 : → ,通过定义() = *。所以,是的排列,并因此是Sym()的成员。

Sym()的子集定义为

是同构于的Sym()的子群。得出这个结果的最快方式是考虑函数 : → Sym()对于所有中的有着() = 。(对Sym()中的复合使用"·"),是群同态因为:

同态也是单射因为:() = id(Sym()的单位元)蕴含了对于所有中的有 = ,选取为的单位元产生 = * = 。可替代的,()也是单射因为:*=*蕴含=(通过左乘上的逆元,因为是群所以一定存在)。

因此同构于的像,它是子群。

有时叫做的正规表示。

另一个证明使用了群作用的语言。考虑群 G {\displaystyle G} 为G-集合,可以证明它有排列表示 ϕ {\displaystyle \phi }

首先假设 G = G / H {\displaystyle G=G/H} 带有 H = { e } {\displaystyle H=\{e\}} 。则根据G-轨道分类这个群作用是 g . e {\displaystyle g.e} (也叫做轨道-稳定集定理)。

现在这个表示是忠实的,如果 ϕ {\displaystyle \phi } 是单射,就是说,如果 ϕ {\displaystyle \phi } 的核是平凡的。假设 g {\displaystyle g} ∈ ker ϕ {\displaystyle \phi } ,则 g = g . e = ϕ ( g ) . e {\displaystyle g=g.e=\phi (g).e} ,通过排列表示和群作用的等价性。但是因为 g {\displaystyle g} ∈ ker ϕ {\displaystyle \phi } , ϕ ( g ) = e {\displaystyle \phi (g)=e} 并因此ker ϕ {\displaystyle \phi } 是平凡的。则im ϕ < G {\displaystyle \phi <G} 并因此利用第一同构定理得出结论。

单位元对应于恒等排列。所有其他的群元素对应于不留下任何元素不变的排列。会因为这也适用于群元素的幂,小于这个元素的阶,每个元素对应于由相同长度的环构成的排列:这个长度是这个元素的阶。在每个环中的元素形成了这个元素生成的子群的左陪集。

Z2 = {0,1}带有模2加法,群元素0对应于恒等排列e,群元素1对应于排列 (12)。

Z3 = {0,1,2}带有模3加法;群元素0对应于恒等排列e,群元素1对应于排列 (123),而群元素2对应于排列 (132)。比如1 + 1 = 2对应于 (123)(123)=(132)。

Z4 = {0,1,2,3}带有模4加法;它的元素对应于e, (1234), (13)(24), (1432)。

克莱因四元群{e, a, b, c}的元素对应于e, (12)(34), (13)(24)和 (14)(23)。

S3(6阶二面体群)是三个对象的所有排列的群,但也是6个群元素的置换群:

相关

  • 世界结核病日世界结核病日(英语:World Tuberculosis Day,或译世界防治结核病日)定于每年的3月24日,是纪念1882年德国微生物学家罗伯特·科霍向一群德国柏林医生发表他对结核病病原菌的发现。
  • DNA定序DNA测序(DNA sequencing,或译DNA定序)是指分析特定DNA片段的碱基序列,也就是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)的排列方式。快速的DNA测序方法的出现极大地推动了生物学和医
  • 巴比伦巴比伦(阿拉伯语:بابل‎ Bābil;阿卡德语:Bābili(m);苏美尔语语标符号:KÁ.DINGIR.RAKI;希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-siz
  • 藻类,又称作悬浮植物,包括数种不同类以光合作用产生能量的生物,其中有属于真核细胞的藻类,也有属于原核细胞的藻类。它们一般被认为是简单的植物,并且一些藻类与比较高等的植物有
  • 蛋白磷酸酶2蛋白磷酸酶2(英语:Protein phosphatase 2,简称PP2或PP2A)是由PPP2CA基因编码的蛋白磷酸酶。PP2A存在于很多组织中,为异三聚体,属于丝氨酸/苏氨酸磷酸酶,具有广泛的底物特异性和多样
  • 常高院常高院(1570年-1633年9月30日),本名为浅井 初,是日本战国时期大名京极高次正室。她父亲是战国大名浅井长政,母亲是织田信长之妹织田市。其姊为丰臣秀吉侧室-浅井茶茶,其妹为德川秀
  • 荒木义夫荒木 义夫(1894年6月17日-1984年2月5日)为日本内务官僚。县知事、台湾总督府警务局长。兵库县出身。父荒木矩,排行长男。就读过第三高等学校,1919年、京都帝国大学法学部法律学科
  • 永思小檗永思小檗(学名:),为小檗科小檗属下的一个植物种。
  • 科学怪人之家 (1944年电影)《科学怪人之家》,又译作《弗兰肯斯坦的房子》,是美国的一部恐怖片,由环球影业于1944年发行。《科学怪人之家》是前一年《科学怪人大战狼人》的续集,也是之后一年《德莱库拉的房
  • 乔玛乔玛(匈牙利语:Kőrösi Csoma Sándor,1784年3月27日-1842年4月11日),匈牙利语言学家、东方学家,首部藏英词典及语法书的作者。1820年,他为了寻找马扎尔人的族源远赴东方,经历许多困