在群论中,凯莱定理,以阿瑟·凯莱命名,声称所有群 同构于在上的对称群的子群。这可以被理解为在的元素上的群作用的一个例子。
集合的排列是任何从到的双射函数;所有这种函数的集合形成了在函数复合下的一个群,叫做“上的对称群”并写为Sym()。
凯莱定理通过把任何群(包括无限群比如(,+))都当作某个底层集合的置换群,把所有群都放在了同一个根基上。因此,对置换群成立的定理对于一般群也成立。
Burnside将其归功于Jordan,但是 Eric Nummela争论说这个定理的名字“凯莱定理”事实上是合适的。凯莱在他最初介绍群概念的1854年论文中证明了定理中的对应是一一对应,但是没能明确的证明它是同态(因此是同构)。但是,Nummela提示大家注意凯莱让当时的数学界知道了这个结果,因此比Jordan要提前了16年。
从初等群论中,知道了对于任何中元素必然有* = ;并通过消除规则知道了* = *当且仅当 = 。所以左乘充当了双射函数 : → ,通过定义() = *。所以,是的排列,并因此是Sym()的成员。
Sym()的子集定义为
是同构于的Sym()的子群。得出这个结果的最快方式是考虑函数 : → Sym()对于所有中的有着() = 。(对Sym()中的复合使用"·"),是群同态因为:
同态也是单射因为:() = id(Sym()的单位元)蕴含了对于所有中的有 = ,选取为的单位元产生 = * = 。可替代的,()也是单射因为:*=*蕴含=(通过左乘上的逆元,因为是群所以一定存在)。
因此同构于的像,它是子群。
有时叫做的正规表示。
另一个证明使用了群作用的语言。考虑群为G-集合,可以证明它有排列表示。
首先假设带有。则根据G-轨道分类这个群作用是(也叫做轨道-稳定集定理)。
现在这个表示是忠实的,如果是单射,就是说,如果的核是平凡的。假设 ∈ ker ,则,通过排列表示和群作用的等价性。但是因为 ∈ ker , 并因此ker 是平凡的。则im 并因此利用第一同构定理得出结论。
单位元对应于恒等排列。所有其他的群元素对应于不留下任何元素不变的排列。会因为这也适用于群元素的幂,小于这个元素的阶,每个元素对应于由相同长度的环构成的排列:这个长度是这个元素的阶。在每个环中的元素形成了这个元素生成的子群的左陪集。
Z2 = {0,1}带有模2加法,群元素0对应于恒等排列e,群元素1对应于排列 (12)。
Z3 = {0,1,2}带有模3加法;群元素0对应于恒等排列e,群元素1对应于排列 (123),而群元素2对应于排列 (132)。比如1 + 1 = 2对应于 (123)(123)=(132)。
Z4 = {0,1,2,3}带有模4加法;它的元素对应于e, (1234), (13)(24), (1432)。
克莱因四元群{e, a, b, c}的元素对应于e, (12)(34), (13)(24)和 (14)(23)。
S3(6阶二面体群)是三个对象的所有排列的群,但也是6个群元素的置换群: