哈密顿原理

✍ dations ◷ 2025-04-02 13:58:10 #哈密顿原理
在物理学里,哈密顿原理(英语:Hamilton's principle)是爱尔兰物理学家威廉·哈密顿于1833年发表的关于平稳作用量原理的表述。哈密顿原理阐明,一个物理系统的拉格朗日函数,所构成的泛函的变分问题解答,可以表达这物理系统的动力行为。拉格朗日函数又称为拉格朗日量,包含了这物理系统所有的物理内涵。这泛函称为作用量。哈密顿原理提供了一种新的方法来表述物理系统的运动。不同于牛顿运动定律的微分方程方法,这方法以积分方程来设定系统的作用量,在作用量平稳的要求下,使用变分法来计算整个系统的运动方程。虽然哈密顿原理本来是用来表述经典力学,这原理也可以应用于经典场,像电磁场或重力场,甚至可以延伸至量子场论等等。微分方程时常被用来表述物理定律。微分方程指定出,随着极小的时间、位置、或其他变数的变化,一个物理变数如何改变。总合这些极小的改变,又加上已知这变数在某一点的数值或导数值,就能求得物理变数在任何点的数值。哈密顿原理用积分方程来表述物理系统的运动。我们只需要设定系统在两个点的状态,叫做最初状态与最终状态。然后,经过求解系统作用量的平稳值,我们可以得到系统在,两个点之间,其他点的状态。不但是关于经典力学中的一个单独粒子,而且也关于经典场像电磁场与万有引力场,这表述都是正确的。更值得一提的是,现今,哈密顿原理已经延伸至量子力学与量子场论了。用变分法数学语言来表述,求解一个物理系统作用量的平稳值(通常是最小值),可以得到这系统随时间的演变(就是说,系统怎样从一个状态演变到另外一个状态)。更广义地,系统的正确演变对于任何摄动必须是平稳的。这要求导致出描述正确演变的微分方程。哈密顿原理阐明,一个物理系统的拉格朗日函数 L {displaystyle L,} 所构成的作用量泛函 S {displaystyle {mathcal {S}},} ,其平稳值是这物理系统的真实演化。以数学方程表示,定义作用量为其中, L ( q , q ˙ , t ) {displaystyle L(mathbf {q} ,{dot {mathbf {q} }},t),} 是系统的拉格朗日函数,广义坐标 q = ( q 1 , q 2 , … , q N ) {displaystyle mathbf {q} =left(q_{1},q_{2},ldots ,q_{N}right),} 是时间 t {displaystyle t,} 的函数, t 1 {displaystyle t_{1},} 和 t 2 {displaystyle t_{2},} 分别为初始时间和终结时间。假若,作用量的一次变分 δ S = 0 {displaystyle delta {mathcal {S}}=0,} ,作用量 S {displaystyle {mathcal {S}},} 为平稳值,则 q ( t ) {displaystyle mathbf {q} (t),} 正确地描述这系统的真实演化。:2从哈密顿原理可以推导出拉格朗日方程。假设 q ( t ) {displaystyle mathbf {q} (t),} 是系统的正确运动,摄动函数 ε ( t ) {displaystyle {boldsymbol {varepsilon }}(t),} 为一个虚位移 δ q {displaystyle delta mathbf {q} ,} ,虚位移在轨道的两个端点的值是零:取至 ε ( t ) {displaystyle {boldsymbol {varepsilon }}(t),} 的一阶摄动,作用量泛函的一次变分为这里,我们将拉格朗日量 L {displaystyle L,} 展开至 ε ( t ) {displaystyle {boldsymbol {varepsilon }}(t),} 的一阶摄动。应用分部积分法于最右边项目:边界条件 ε ( t 1 ) = ε ( t 2 )   = d e f   0 {displaystyle {boldsymbol {varepsilon }}(t_{1})={boldsymbol {varepsilon }}(t_{2}) {stackrel {mathrm {def} }{=}} 0,} 使第一个项目归零:作用量泛函 S {displaystyle {mathcal {S}},} 平稳的要求意味着,对于正确运动的任意摄动 ε ( t ) {displaystyle {boldsymbol {varepsilon }}(t),} ,一次变分 δ S {displaystyle delta {mathcal {S}},} 必须等于零:特别注意,我们没有对广义坐标 q {displaystyle mathbf {q} ,} 做任何要求。在这里,我们要求所有的广义坐标都互不相依;也就是说,这系统是完整系统。这样,我们可以应用变分法基本引理而得到拉格朗日方程:在各个物理学领域,拉格朗日方程都被认为是非常重要的方程,能够用来精确地理论分析许多物理系统。:2-3

相关

  • 气管插管气管插管(tracheal intubation、通常称呼:intubation)是指将气管导管通过上呼吸道插入气管内,以保障呼吸道通畅的医疗操作。全麻手术中,病人无法自主呼吸,而气管插管是建立人工呼
  • 置信区间在统计学中,一个概率样本的置信区间(英语:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于
  • 贝伐单抗安维汀(学名:Bevacizumab;商品名:Avastin)又称为癌思停,是世界上第一个用于抗肿瘤血管生成的人类化单克隆抗体,可用于治疗结肠癌等多种实体肿瘤,临床上已证实其安全性。安维汀已在一
  • 纳米材料纳米材料广义上是三维空间中至少有一维处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的材料的总称。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小
  • 阿贝尔·冈斯阿贝尔·冈斯(Abel Gance,1889年10月25日-1981年11月10日)是法国电影导演,作品有1927年的电影《拿玻仑(英语:Napoléon (1927 film))》等。
  • 科林英多尔夫之子科林(中世纪盖尔语: Cuilén mac Ildulb:现代盖尔语: Cailean;?-971年)中文常被翻译为科林王(Culen或Colin),绰号白种人(An Fionn)是967年-971年在位的阿尔巴国王。他是阿
  • 约翰·汉考克约翰·汉考克(John Hancock,1737年1月12日-1793年10月8日),美国革命家、政治家,富商出身。他曾于1775年-1777年任大陆会议主席, 是独立宣言的第一个签署人,美国开国元老之一。由于他
  • 合成纤维合成纤维(英语:Synthetic fiber)是科学家广泛研究改进天然存在的动物(英语:Animal fiber)和植物纤维的结果。通常,合成纤维通过将纤维形成材料通过喷丝板挤出到空气和水中,形成一条
  • 埃及埃及华人,是海外华人一部分,他们大概在百多年前来到埃及。埃及,特别是开罗的艾资哈尔大学长期以来是回族的伊斯兰学习中心。中国政府在1931年曾资助一团回族学生到爱兹哈尔大学
  • 罗伯特·加罗罗伯特·查尔斯·加洛(英语:Robert Charles Gallo,1937年3月23日-),美国病毒学家。早期研究白血病,后转向肿瘤病毒的研究。生于康涅狄格州沃特伯里。加洛最出名的贡献是发现第一个