首页 >
哈密顿原理
✍ dations ◷ 2025-09-11 10:29:51 #哈密顿原理
在物理学里,哈密顿原理(英语:Hamilton's principle)是爱尔兰物理学家威廉·哈密顿于1833年发表的关于平稳作用量原理的表述。哈密顿原理阐明,一个物理系统的拉格朗日函数,所构成的泛函的变分问题解答,可以表达这物理系统的动力行为。拉格朗日函数又称为拉格朗日量,包含了这物理系统所有的物理内涵。这泛函称为作用量。哈密顿原理提供了一种新的方法来表述物理系统的运动。不同于牛顿运动定律的微分方程方法,这方法以积分方程来设定系统的作用量,在作用量平稳的要求下,使用变分法来计算整个系统的运动方程。虽然哈密顿原理本来是用来表述经典力学,这原理也可以应用于经典场,像电磁场或重力场,甚至可以延伸至量子场论等等。微分方程时常被用来表述物理定律。微分方程指定出,随着极小的时间、位置、或其他变数的变化,一个物理变数如何改变。总合这些极小的改变,又加上已知这变数在某一点的数值或导数值,就能求得物理变数在任何点的数值。哈密顿原理用积分方程来表述物理系统的运动。我们只需要设定系统在两个点的状态,叫做最初状态与最终状态。然后,经过求解系统作用量的平稳值,我们可以得到系统在,两个点之间,其他点的状态。不但是关于经典力学中的一个单独粒子,而且也关于经典场像电磁场与万有引力场,这表述都是正确的。更值得一提的是,现今,哈密顿原理已经延伸至量子力学与量子场论了。用变分法数学语言来表述,求解一个物理系统作用量的平稳值(通常是最小值),可以得到这系统随时间的演变(就是说,系统怎样从一个状态演变到另外一个状态)。更广义地,系统的正确演变对于任何摄动必须是平稳的。这要求导致出描述正确演变的微分方程。哈密顿原理阐明,一个物理系统的拉格朗日函数
L
{displaystyle L,}
所构成的作用量泛函
S
{displaystyle {mathcal {S}},}
,其平稳值是这物理系统的真实演化。以数学方程表示,定义作用量为其中,
L
(
q
,
q
˙
,
t
)
{displaystyle L(mathbf {q} ,{dot {mathbf {q} }},t),}
是系统的拉格朗日函数,广义坐标
q
=
(
q
1
,
q
2
,
…
,
q
N
)
{displaystyle mathbf {q} =left(q_{1},q_{2},ldots ,q_{N}right),}
是时间
t
{displaystyle t,}
的函数,
t
1
{displaystyle t_{1},}
和
t
2
{displaystyle t_{2},}
分别为初始时间和终结时间。假若,作用量的一次变分
δ
S
=
0
{displaystyle delta {mathcal {S}}=0,}
,作用量
S
{displaystyle {mathcal {S}},}
为平稳值,则
q
(
t
)
{displaystyle mathbf {q} (t),}
正确地描述这系统的真实演化。:2从哈密顿原理可以推导出拉格朗日方程。假设
q
(
t
)
{displaystyle mathbf {q} (t),}
是系统的正确运动,摄动函数
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
为一个虚位移
δ
q
{displaystyle delta mathbf {q} ,}
,虚位移在轨道的两个端点的值是零:取至
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
的一阶摄动,作用量泛函的一次变分为这里,我们将拉格朗日量
L
{displaystyle L,}
展开至
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
的一阶摄动。应用分部积分法于最右边项目:边界条件
ε
(
t
1
)
=
ε
(
t
2
)
=
d
e
f
0
{displaystyle {boldsymbol {varepsilon }}(t_{1})={boldsymbol {varepsilon }}(t_{2}) {stackrel {mathrm {def} }{=}} 0,}
使第一个项目归零:作用量泛函
S
{displaystyle {mathcal {S}},}
平稳的要求意味着,对于正确运动的任意摄动
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
,一次变分
δ
S
{displaystyle delta {mathcal {S}},}
必须等于零:特别注意,我们没有对广义坐标
q
{displaystyle mathbf {q} ,}
做任何要求。在这里,我们要求所有的广义坐标都互不相依;也就是说,这系统是完整系统。这样,我们可以应用变分法基本引理而得到拉格朗日方程:在各个物理学领域,拉格朗日方程都被认为是非常重要的方程,能够用来精确地理论分析许多物理系统。:2-3
相关
- 《研究著作法案》研究著作法案(英语:Research Works Act), 又称 H.R. 3699, 是一项美国的法案。该法案于2011年12月16日由议员Darrell Issa (R-CA) 提交美国美国众议院,并由Carolyn B. Maloney (
- Netscape Messenger 9Netscape Messenger 9是由网景制作的一个跨平台的独立电子邮件客户端及新闻组程序,建构于Mozilla Thunderbird。最初于2007年6月11日公开的时候以Netscape Mercury之名宣传,这
- 黏蛋白黏蛋白(英语:mucoprotein)是一类主要由黏多糖组成的糖蛋白,常见于膝盖滑膜液(英语:synovial fluid)。医学导航:遗传代谢缺陷代谢、k,c/g/r/p/y/i,f/h/s/l/o/e,a/u,n,mk,cgrp/y/i,f/h
- 训名训名,又称学名。有一些家庭的儿童,入学受教育时或会由父亲、老师或其他长辈,取一个“训名”,供老师称呼,有别于小名、表字。如《红楼梦》:“这薛公子学名薛蟠,表字文起。”《宋史》
- 安德鲁·怀利安德鲁·H·怀利(英语:Andrew H. Wyllie),苏格兰病理学家。1972年,他在阿伯丁大学用电子显微镜揭示了自然细胞死亡的意义。他和合作者约翰· 克尔(John Kerr)、阿拉斯泰尔·柯里(Ala
- 瘟神瘟神,或称疫病神,乃东亚民间信仰中的瘟疫之神,各地信仰的瘟神并不一致。中国、朝鲜半岛的瘟神以五福大帝最为著名,即:春瘟张元伯、夏瘟刘元达、秋瘟赵公明、冬瘟锺仕贵、总管中瘟
- 刑事鉴识学刑事鉴识学的定义为应用自然科学的知识与方法,对于证物予以鉴定、个化、评估,用以重建犯罪现场,提供侦查方向及法院判定刑期参考依据的学问。中国《三国志》吴书中记载了一项鉴
- 史匹曼等级相关系数在 统计学中, 以查尔斯·斯皮尔曼命名的斯皮尔曼等级相关系数, 经常用希腊字母 ρ {\displaystyle \rho } (rho) 或者
- D02(Antifungals for dermatological use)(Emollients and protectives)(Preparations for treatment of wounds and ulcers)(Antipruritics, including antihistamines, anesthetics,
- 里尔35里尔35(英语:Learjet 35)及里尔36(英语:Learjet 36)喷射机,为里尔喷射机所出厂的小型商务喷射机,在1983年,美国空军订购80架里尔35式喷射机A型,作为空军的作业支援专机,军方编号为C-21