首页 >
哈密顿原理
✍ dations ◷ 2025-11-23 05:11:59 #哈密顿原理
在物理学里,哈密顿原理(英语:Hamilton's principle)是爱尔兰物理学家威廉·哈密顿于1833年发表的关于平稳作用量原理的表述。哈密顿原理阐明,一个物理系统的拉格朗日函数,所构成的泛函的变分问题解答,可以表达这物理系统的动力行为。拉格朗日函数又称为拉格朗日量,包含了这物理系统所有的物理内涵。这泛函称为作用量。哈密顿原理提供了一种新的方法来表述物理系统的运动。不同于牛顿运动定律的微分方程方法,这方法以积分方程来设定系统的作用量,在作用量平稳的要求下,使用变分法来计算整个系统的运动方程。虽然哈密顿原理本来是用来表述经典力学,这原理也可以应用于经典场,像电磁场或重力场,甚至可以延伸至量子场论等等。微分方程时常被用来表述物理定律。微分方程指定出,随着极小的时间、位置、或其他变数的变化,一个物理变数如何改变。总合这些极小的改变,又加上已知这变数在某一点的数值或导数值,就能求得物理变数在任何点的数值。哈密顿原理用积分方程来表述物理系统的运动。我们只需要设定系统在两个点的状态,叫做最初状态与最终状态。然后,经过求解系统作用量的平稳值,我们可以得到系统在,两个点之间,其他点的状态。不但是关于经典力学中的一个单独粒子,而且也关于经典场像电磁场与万有引力场,这表述都是正确的。更值得一提的是,现今,哈密顿原理已经延伸至量子力学与量子场论了。用变分法数学语言来表述,求解一个物理系统作用量的平稳值(通常是最小值),可以得到这系统随时间的演变(就是说,系统怎样从一个状态演变到另外一个状态)。更广义地,系统的正确演变对于任何摄动必须是平稳的。这要求导致出描述正确演变的微分方程。哈密顿原理阐明,一个物理系统的拉格朗日函数
L
{displaystyle L,}
所构成的作用量泛函
S
{displaystyle {mathcal {S}},}
,其平稳值是这物理系统的真实演化。以数学方程表示,定义作用量为其中,
L
(
q
,
q
˙
,
t
)
{displaystyle L(mathbf {q} ,{dot {mathbf {q} }},t),}
是系统的拉格朗日函数,广义坐标
q
=
(
q
1
,
q
2
,
…
,
q
N
)
{displaystyle mathbf {q} =left(q_{1},q_{2},ldots ,q_{N}right),}
是时间
t
{displaystyle t,}
的函数,
t
1
{displaystyle t_{1},}
和
t
2
{displaystyle t_{2},}
分别为初始时间和终结时间。假若,作用量的一次变分
δ
S
=
0
{displaystyle delta {mathcal {S}}=0,}
,作用量
S
{displaystyle {mathcal {S}},}
为平稳值,则
q
(
t
)
{displaystyle mathbf {q} (t),}
正确地描述这系统的真实演化。:2从哈密顿原理可以推导出拉格朗日方程。假设
q
(
t
)
{displaystyle mathbf {q} (t),}
是系统的正确运动,摄动函数
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
为一个虚位移
δ
q
{displaystyle delta mathbf {q} ,}
,虚位移在轨道的两个端点的值是零:取至
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
的一阶摄动,作用量泛函的一次变分为这里,我们将拉格朗日量
L
{displaystyle L,}
展开至
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
的一阶摄动。应用分部积分法于最右边项目:边界条件
ε
(
t
1
)
=
ε
(
t
2
)
=
d
e
f
0
{displaystyle {boldsymbol {varepsilon }}(t_{1})={boldsymbol {varepsilon }}(t_{2}) {stackrel {mathrm {def} }{=}} 0,}
使第一个项目归零:作用量泛函
S
{displaystyle {mathcal {S}},}
平稳的要求意味着,对于正确运动的任意摄动
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
,一次变分
δ
S
{displaystyle delta {mathcal {S}},}
必须等于零:特别注意,我们没有对广义坐标
q
{displaystyle mathbf {q} ,}
做任何要求。在这里,我们要求所有的广义坐标都互不相依;也就是说,这系统是完整系统。这样,我们可以应用变分法基本引理而得到拉格朗日方程:在各个物理学领域,拉格朗日方程都被认为是非常重要的方程,能够用来精确地理论分析许多物理系统。:2-3
相关
- 飞行员飞行员(英语:pilot)或称飞机师。是指出于职业或非盈利性需要(例如:娱乐)驾驶航空器的人员。在民用航空领域,除满足特定要求的情况外,各国民航当局一般都要求航空器驾驶员需持有相应
- 美容美容指为了追求“美”而对于身体所进行的物理性之修缮巧饰之行为,通常指容貌上的。美容有三个定义:本条目指第一及第二项。我们现在每天出门前必做的事情——洗脸,是文字记载的
- 极度危险物质列表《美国应急规划与社区知情权法》中第302节规定了极度危险物质列表(42 U.S.C. 11002)。这个列表可以在40 C.F.R 355的附录中找到。截止至2006年的更新可以在2006年8月16日的《
- 拟交感神经药拟交感神经药,指与兴奋交感神经的效应相同的药物,也叫做拟交感药物。拟交感药的主要目的是兴奋肾上腺素受体。其中包括肾上腺素、去甲肾上腺素、麻黄碱及一些合成药如异丙肾上
- 血胆红素过高胆红素(英文:Bilirubin)是胆色素的一种,是人类胆汁的主要色素,呈橙黄色。它是体内血红素的主要代谢产物,有毒性,可对大脑和神经系统引起不可逆的损害,但也有抗氧化剂功能,可以抑制亚
- 波长波长是一个物理学的名词,指在某一固定的频率里,沿着波的传播方向、在波的图形中,离平衡位置的“位移”与“时间”皆相同的两个质点之间的最短距离。在物理学,波长普遍使用希腊字
- 腐殖质腐殖质是土壤特异有机质,也是土壤有机质的主要组成部分,约占有机质总量的50%-65%。腐殖质是一种分子复杂、抗分解性强的棕色或暗棕色无定形胶体,动植物残体(如植物组织(枯枝落叶)和
- 二磷酸胞苷二磷酸胞苷(CDP,Cytidine diphosphate)是一种核苷酸,组成物是焦磷酸基团、五碳糖、以及碱基胞嘧啶。
- 白海白海(俄语:Белое море)是巴伦支海的延伸部分,位于俄罗斯境内。西面为卡累利阿共和国,北面为科拉半岛,东面为卡宁半岛。面积8.9万平方公里。为俄罗斯内海。白海包括四大海
- 近1,200万德意志裔人被由东欧驱逐在第二次世界大战的后期及战争结束时候,数百万德意志公民(不论民族或是否与纳粹德国有联系)以及德意志裔人(不论国籍)被迫从其他欧洲国家迁徙回德国。受到影响的范围包括前德意志
