首页 >
哈密顿原理
✍ dations ◷ 2025-11-30 05:03:46 #哈密顿原理
在物理学里,哈密顿原理(英语:Hamilton's principle)是爱尔兰物理学家威廉·哈密顿于1833年发表的关于平稳作用量原理的表述。哈密顿原理阐明,一个物理系统的拉格朗日函数,所构成的泛函的变分问题解答,可以表达这物理系统的动力行为。拉格朗日函数又称为拉格朗日量,包含了这物理系统所有的物理内涵。这泛函称为作用量。哈密顿原理提供了一种新的方法来表述物理系统的运动。不同于牛顿运动定律的微分方程方法,这方法以积分方程来设定系统的作用量,在作用量平稳的要求下,使用变分法来计算整个系统的运动方程。虽然哈密顿原理本来是用来表述经典力学,这原理也可以应用于经典场,像电磁场或重力场,甚至可以延伸至量子场论等等。微分方程时常被用来表述物理定律。微分方程指定出,随着极小的时间、位置、或其他变数的变化,一个物理变数如何改变。总合这些极小的改变,又加上已知这变数在某一点的数值或导数值,就能求得物理变数在任何点的数值。哈密顿原理用积分方程来表述物理系统的运动。我们只需要设定系统在两个点的状态,叫做最初状态与最终状态。然后,经过求解系统作用量的平稳值,我们可以得到系统在,两个点之间,其他点的状态。不但是关于经典力学中的一个单独粒子,而且也关于经典场像电磁场与万有引力场,这表述都是正确的。更值得一提的是,现今,哈密顿原理已经延伸至量子力学与量子场论了。用变分法数学语言来表述,求解一个物理系统作用量的平稳值(通常是最小值),可以得到这系统随时间的演变(就是说,系统怎样从一个状态演变到另外一个状态)。更广义地,系统的正确演变对于任何摄动必须是平稳的。这要求导致出描述正确演变的微分方程。哈密顿原理阐明,一个物理系统的拉格朗日函数
L
{displaystyle L,}
所构成的作用量泛函
S
{displaystyle {mathcal {S}},}
,其平稳值是这物理系统的真实演化。以数学方程表示,定义作用量为其中,
L
(
q
,
q
˙
,
t
)
{displaystyle L(mathbf {q} ,{dot {mathbf {q} }},t),}
是系统的拉格朗日函数,广义坐标
q
=
(
q
1
,
q
2
,
…
,
q
N
)
{displaystyle mathbf {q} =left(q_{1},q_{2},ldots ,q_{N}right),}
是时间
t
{displaystyle t,}
的函数,
t
1
{displaystyle t_{1},}
和
t
2
{displaystyle t_{2},}
分别为初始时间和终结时间。假若,作用量的一次变分
δ
S
=
0
{displaystyle delta {mathcal {S}}=0,}
,作用量
S
{displaystyle {mathcal {S}},}
为平稳值,则
q
(
t
)
{displaystyle mathbf {q} (t),}
正确地描述这系统的真实演化。:2从哈密顿原理可以推导出拉格朗日方程。假设
q
(
t
)
{displaystyle mathbf {q} (t),}
是系统的正确运动,摄动函数
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
为一个虚位移
δ
q
{displaystyle delta mathbf {q} ,}
,虚位移在轨道的两个端点的值是零:取至
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
的一阶摄动,作用量泛函的一次变分为这里,我们将拉格朗日量
L
{displaystyle L,}
展开至
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
的一阶摄动。应用分部积分法于最右边项目:边界条件
ε
(
t
1
)
=
ε
(
t
2
)
=
d
e
f
0
{displaystyle {boldsymbol {varepsilon }}(t_{1})={boldsymbol {varepsilon }}(t_{2}) {stackrel {mathrm {def} }{=}} 0,}
使第一个项目归零:作用量泛函
S
{displaystyle {mathcal {S}},}
平稳的要求意味着,对于正确运动的任意摄动
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
,一次变分
δ
S
{displaystyle delta {mathcal {S}},}
必须等于零:特别注意,我们没有对广义坐标
q
{displaystyle mathbf {q} ,}
做任何要求。在这里,我们要求所有的广义坐标都互不相依;也就是说,这系统是完整系统。这样,我们可以应用变分法基本引理而得到拉格朗日方程:在各个物理学领域,拉格朗日方程都被认为是非常重要的方程,能够用来精确地理论分析许多物理系统。:2-3
相关
- 法显法显(337年-422年),俗姓龚,平阳武阳(今山西省长治市襄垣县)人,东晋、刘宋的高僧、旅行家、翻译家。因法显的三位兄长都幼年早亡,其父亲怕殃及法显,在其三岁时便让他剃度出家为沙弥。二
- 拜耳药品拜耳股份公司(Bayer AG /ˈbaɪər/; 德语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2
- 小阴唇小阴唇(Labia Minora)是两瓣柔软的皮肤,位于大阴唇内侧、阴道口外侧。其中有丰富的神经末梢,具有相当的敏感性。处女时是经常处于闭合状态,保护阴道洁净。
- NADH脱氢酶NADH脱氢酶(英语:NADH dehydrogenase,又称为NADH脱氢酶复合物、NADH:辅酶Q还原酶或复合体Ⅰ,EC 1.6.5.3)是一种位于线粒体内膜催化电子从NADH传递给辅酶Q的酶。此酶是线粒体中氧
- 犀牛犀牛是犀科(学名:Rhinocerotidae)动物的总称,属哺乳纲奇蹄目,主要分布于非洲和东南亚。是最大的奇蹄目动物,也是体型仅次于大象的大型陆地动物。所有的犀牛基本上都是腿短和身体粗
- 意大利广播电视公司意大利广播电视公司(意大利语:Rai - Radiotelevisione Italiana),简称RAI,是意大利的公共广播机构,隶属于经济财政部之下。开设有许多电视台和广播电台,是欧洲广播联盟的23个成员之
- 副热带气旋亚热带气旋,又称副热带气旋,是一个与锋面不相关的低气压,特性介乎热带气旋及温带气旋之间,通常是高空冷心低气压伸延至地面或高纬冷心低气压割离至低纬形成的。在合适的环境下,亚
- 常染色体隐性遗传隐性遗传(Recessive trait)是一种基因遗传中的情况,表现为在遗传过程中,某个基因的性状并不显现出来,而有可能“隐藏”于基因内,除非来自父母双方的基因都给子代遗传了此基因的
- Ⅰ类抗心律失常药(英语:Antiarrhythmic agents)是一类用于抑制心脏非正常节律(心律失常)的药物,这些情况例如心房颤动、心房扑动、心室性心搏过速以及心室颤动。很多人试图将此类药物
- 麻黄素麻黄碱,又称麻黄素(英语:ephedrine,缩写:EPH)是一种拟交感神经胺,可用来预防腰椎麻醉(英语:Spinal anaesthesia)时可能引发的低血压症状,也会在治疗气喘、猝睡症以及肥胖症中使用,但效果
