哈密顿原理

✍ dations ◷ 2025-08-21 11:41:25 #哈密顿原理
在物理学里,哈密顿原理(英语:Hamilton's principle)是爱尔兰物理学家威廉·哈密顿于1833年发表的关于平稳作用量原理的表述。哈密顿原理阐明,一个物理系统的拉格朗日函数,所构成的泛函的变分问题解答,可以表达这物理系统的动力行为。拉格朗日函数又称为拉格朗日量,包含了这物理系统所有的物理内涵。这泛函称为作用量。哈密顿原理提供了一种新的方法来表述物理系统的运动。不同于牛顿运动定律的微分方程方法,这方法以积分方程来设定系统的作用量,在作用量平稳的要求下,使用变分法来计算整个系统的运动方程。虽然哈密顿原理本来是用来表述经典力学,这原理也可以应用于经典场,像电磁场或重力场,甚至可以延伸至量子场论等等。微分方程时常被用来表述物理定律。微分方程指定出,随着极小的时间、位置、或其他变数的变化,一个物理变数如何改变。总合这些极小的改变,又加上已知这变数在某一点的数值或导数值,就能求得物理变数在任何点的数值。哈密顿原理用积分方程来表述物理系统的运动。我们只需要设定系统在两个点的状态,叫做最初状态与最终状态。然后,经过求解系统作用量的平稳值,我们可以得到系统在,两个点之间,其他点的状态。不但是关于经典力学中的一个单独粒子,而且也关于经典场像电磁场与万有引力场,这表述都是正确的。更值得一提的是,现今,哈密顿原理已经延伸至量子力学与量子场论了。用变分法数学语言来表述,求解一个物理系统作用量的平稳值(通常是最小值),可以得到这系统随时间的演变(就是说,系统怎样从一个状态演变到另外一个状态)。更广义地,系统的正确演变对于任何摄动必须是平稳的。这要求导致出描述正确演变的微分方程。哈密顿原理阐明,一个物理系统的拉格朗日函数 L {displaystyle L,} 所构成的作用量泛函 S {displaystyle {mathcal {S}},} ,其平稳值是这物理系统的真实演化。以数学方程表示,定义作用量为其中, L ( q , q ˙ , t ) {displaystyle L(mathbf {q} ,{dot {mathbf {q} }},t),} 是系统的拉格朗日函数,广义坐标 q = ( q 1 , q 2 , … , q N ) {displaystyle mathbf {q} =left(q_{1},q_{2},ldots ,q_{N}right),} 是时间 t {displaystyle t,} 的函数, t 1 {displaystyle t_{1},} 和 t 2 {displaystyle t_{2},} 分别为初始时间和终结时间。假若,作用量的一次变分 δ S = 0 {displaystyle delta {mathcal {S}}=0,} ,作用量 S {displaystyle {mathcal {S}},} 为平稳值,则 q ( t ) {displaystyle mathbf {q} (t),} 正确地描述这系统的真实演化。:2从哈密顿原理可以推导出拉格朗日方程。假设 q ( t ) {displaystyle mathbf {q} (t),} 是系统的正确运动,摄动函数 ε ( t ) {displaystyle {boldsymbol {varepsilon }}(t),} 为一个虚位移 δ q {displaystyle delta mathbf {q} ,} ,虚位移在轨道的两个端点的值是零:取至 ε ( t ) {displaystyle {boldsymbol {varepsilon }}(t),} 的一阶摄动,作用量泛函的一次变分为这里,我们将拉格朗日量 L {displaystyle L,} 展开至 ε ( t ) {displaystyle {boldsymbol {varepsilon }}(t),} 的一阶摄动。应用分部积分法于最右边项目:边界条件 ε ( t 1 ) = ε ( t 2 )   = d e f   0 {displaystyle {boldsymbol {varepsilon }}(t_{1})={boldsymbol {varepsilon }}(t_{2}) {stackrel {mathrm {def} }{=}} 0,} 使第一个项目归零:作用量泛函 S {displaystyle {mathcal {S}},} 平稳的要求意味着,对于正确运动的任意摄动 ε ( t ) {displaystyle {boldsymbol {varepsilon }}(t),} ,一次变分 δ S {displaystyle delta {mathcal {S}},} 必须等于零:特别注意,我们没有对广义坐标 q {displaystyle mathbf {q} ,} 做任何要求。在这里,我们要求所有的广义坐标都互不相依;也就是说,这系统是完整系统。这样,我们可以应用变分法基本引理而得到拉格朗日方程:在各个物理学领域,拉格朗日方程都被认为是非常重要的方程,能够用来精确地理论分析许多物理系统。:2-3

相关

  • 孢子孢子(英语:Spore,汉语拼音:bāo-zǐ,注音符号:ㄅㄠ ㄗˇ)是一种脱离亲本后能发育成新个体的单细胞或少数细胞的繁殖体。孢子一般有休眠作用,能在恶劣的环境下保持自有的传播能力,并再
  • 抗炎抗炎性(英语:Anti-inflammatory)指物质或治疗能减少炎症的特性。消炎药占约止痛药的一半。消炎药以消炎作用来减少疼痛,与鸦片类药物不同,后者影响中枢神经系统以阻断疼痛讯号传
  • 报酬报酬(英语术语:remuneration,英语俗称:employment compensation),(工资和实物工资的合成),泛指雇员作出有偿劳动而获得的回报,包括工资及其他项目(例如津贴、保险、退休金),以及非现金的
  • 因纽特伊努克提图特语,或译作因纽特语、伊努特语、Eastern Canadian Inuktitut( (/ɪˈnʊktᵻtʊt/; Inuktitut: .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL",
  • 虚拟性交虚拟性交(virtual sex)或称“虚拟性爱”,是两人或多人用通讯设备来模拟性活动过程,实际上往往只是远距色情体验的性幻想或辅助彼此自慰的性举措,藉以满足性欲。虚拟性交主要形式
  • 菲利波·布鲁内莱斯基菲利波·布鲁内莱斯基(意大利语:Filippo Brunelleschi,“Brunelleschi”又译布鲁内列斯基、伯鲁乃列斯基,1377年-1446年4月15日),意大利文艺复兴早期颇负盛名的建筑师与工程师,他的
  • 嵌齿象嵌齿象属(学名:Gomphotherium),又名三棱齿象或四偏齿象,是一属已灭绝的长鼻目,生存于中新世早期至上新世早期的欧洲(包括法国、德国及奥地利)、北美洲(美国堪萨斯州)、亚洲(巴基斯坦)及
  • 九数九数是春秋战国时代形成数学的九个分支: 郑玄引《周礼注》:“九数:方田、粟米、差分、少广、商功、均输、方程、盈不足、旁要。”《算数书》已经具备九数的雏形,有方田术,差分术,
  • 末日之钟末日钟,又叫末日时钟(英语:Doomsday Clock)是一虚构钟面,由芝加哥大学的《原子科学家公报(英语:Bulletin of the Atomic Scientists)》杂志于1947年设立,每年一月进行一次评估,标示出
  • 迷网细脉网,又称迷网或异网,是一个牵涉到混合血管和动脉的复杂系统,而大蓝鳍鲔(一种比较发达的鲔鱼)正是其中拥有这系统的,法国博物学家与动物学家乔治·居维叶(Georges Cuvier)称这系统