首页 >
哈密顿原理
✍ dations ◷ 2025-04-26 12:30:34 #哈密顿原理
在物理学里,哈密顿原理(英语:Hamilton's principle)是爱尔兰物理学家威廉·哈密顿于1833年发表的关于平稳作用量原理的表述。哈密顿原理阐明,一个物理系统的拉格朗日函数,所构成的泛函的变分问题解答,可以表达这物理系统的动力行为。拉格朗日函数又称为拉格朗日量,包含了这物理系统所有的物理内涵。这泛函称为作用量。哈密顿原理提供了一种新的方法来表述物理系统的运动。不同于牛顿运动定律的微分方程方法,这方法以积分方程来设定系统的作用量,在作用量平稳的要求下,使用变分法来计算整个系统的运动方程。虽然哈密顿原理本来是用来表述经典力学,这原理也可以应用于经典场,像电磁场或重力场,甚至可以延伸至量子场论等等。微分方程时常被用来表述物理定律。微分方程指定出,随着极小的时间、位置、或其他变数的变化,一个物理变数如何改变。总合这些极小的改变,又加上已知这变数在某一点的数值或导数值,就能求得物理变数在任何点的数值。哈密顿原理用积分方程来表述物理系统的运动。我们只需要设定系统在两个点的状态,叫做最初状态与最终状态。然后,经过求解系统作用量的平稳值,我们可以得到系统在,两个点之间,其他点的状态。不但是关于经典力学中的一个单独粒子,而且也关于经典场像电磁场与万有引力场,这表述都是正确的。更值得一提的是,现今,哈密顿原理已经延伸至量子力学与量子场论了。用变分法数学语言来表述,求解一个物理系统作用量的平稳值(通常是最小值),可以得到这系统随时间的演变(就是说,系统怎样从一个状态演变到另外一个状态)。更广义地,系统的正确演变对于任何摄动必须是平稳的。这要求导致出描述正确演变的微分方程。哈密顿原理阐明,一个物理系统的拉格朗日函数
L
{displaystyle L,}
所构成的作用量泛函
S
{displaystyle {mathcal {S}},}
,其平稳值是这物理系统的真实演化。以数学方程表示,定义作用量为其中,
L
(
q
,
q
˙
,
t
)
{displaystyle L(mathbf {q} ,{dot {mathbf {q} }},t),}
是系统的拉格朗日函数,广义坐标
q
=
(
q
1
,
q
2
,
…
,
q
N
)
{displaystyle mathbf {q} =left(q_{1},q_{2},ldots ,q_{N}right),}
是时间
t
{displaystyle t,}
的函数,
t
1
{displaystyle t_{1},}
和
t
2
{displaystyle t_{2},}
分别为初始时间和终结时间。假若,作用量的一次变分
δ
S
=
0
{displaystyle delta {mathcal {S}}=0,}
,作用量
S
{displaystyle {mathcal {S}},}
为平稳值,则
q
(
t
)
{displaystyle mathbf {q} (t),}
正确地描述这系统的真实演化。:2从哈密顿原理可以推导出拉格朗日方程。假设
q
(
t
)
{displaystyle mathbf {q} (t),}
是系统的正确运动,摄动函数
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
为一个虚位移
δ
q
{displaystyle delta mathbf {q} ,}
,虚位移在轨道的两个端点的值是零:取至
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
的一阶摄动,作用量泛函的一次变分为这里,我们将拉格朗日量
L
{displaystyle L,}
展开至
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
的一阶摄动。应用分部积分法于最右边项目:边界条件
ε
(
t
1
)
=
ε
(
t
2
)
=
d
e
f
0
{displaystyle {boldsymbol {varepsilon }}(t_{1})={boldsymbol {varepsilon }}(t_{2}) {stackrel {mathrm {def} }{=}} 0,}
使第一个项目归零:作用量泛函
S
{displaystyle {mathcal {S}},}
平稳的要求意味着,对于正确运动的任意摄动
ε
(
t
)
{displaystyle {boldsymbol {varepsilon }}(t),}
,一次变分
δ
S
{displaystyle delta {mathcal {S}},}
必须等于零:特别注意,我们没有对广义坐标
q
{displaystyle mathbf {q} ,}
做任何要求。在这里,我们要求所有的广义坐标都互不相依;也就是说,这系统是完整系统。这样,我们可以应用变分法基本引理而得到拉格朗日方程:在各个物理学领域,拉格朗日方程都被认为是非常重要的方程,能够用来精确地理论分析许多物理系统。:2-3
相关
- 小托马斯·弗兰西斯小托马斯·弗兰西斯(英语:Thomas Francis Jr.,1900年7月15日-1969年10月1日),美国医生,病毒学家与流行病学家。弗兰西斯是第一位在美国分离出流感病毒的科学家,在1940年发现了另一种
- 康德伊曼努尔·康德(德语:Immanuel Kant;德语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000
- 博士论文博士论文(英文:doctoral thesis,或是doctoral dissertation)是学位论文的一种,是博士候选人为了取得博士学位而撰写的论文,博士论文的权威性会比硕士、学士的学位论文要高。完成后
- 古植物学古植物学是一门研究地球历史上植物的形态、构造、分类、分布以及演化关系,是植物学和古生物学的分支学科。古植物学通过对植物化石的收集、研究和解释,得出植物的进化过程,同时
- 偶氮化合物偶氮化合物是一类含氮有机化合物,通式为R-N=N-R',R/R'为有机基团,可以是芳基或烷基。N=N称为偶氮基。若R/R'都为氢,则成为二亚胺(HN=NH)。以芳香族偶氮化合物最为稳定,也最为常用,π
- 活化石活化石,是指任何生物其类似种只存在于化石中,而没有其他现存的近似种。这些种类曾经从主要的灭绝事件中存活下来,并保留过去原始的特性。活化石定义是一般先发现化石再发现活体
- 结构基因组学结构基因组学是一门用结构生物学方法研究整个生物体、整个细胞或整个基因组中所有的蛋白质和相关蛋白质复合物的三维结构的学科。主要利用实验方式(X射线晶体学、核磁共振波
- 武向平武向平(1961年1月-),陕西黄龙人,中国天文学家,中国科学院院士。1982年毕业于西北电讯工程学院,1985年获该校硕士学位,1989年获中国科学院北京天文台博士学位。2011年当选为中国科学
- 瘘瘘(拉丁语:Fistula,或称瘘管)是体表上皮细胞与内脏或深层组织之间形成的病理性管道,有内口与外口。瘘管的外口,又称为漏,是流脓水,淋漓不断,不能收口的溃疡疮口。而有时,为了达到对某
- 韩国行政区划外交 · 南北统一 · 阳光政策 · 行政区划 · 人权(朝鲜语:대한민국의 인권)政治主题大韩民国的行政区划,主要将全国划分为1个特别市(首尔市)、1个特别自治市(世宗市)、6个广域