分子对称性

✍ dations ◷ 2025-04-04 15:23:54 #对称,理论化学

分子对称性描述分子的对称性表现并根据分子的对称性对分子作分类。分子对称性在化学中是一项基础概念,因为它可以预测或解释许多分子的化学性质,例如分子振动、分子的偶极矩和它的光谱学数据(以拉波特规则之类的选择定则为基础)。在大学程度的物理化学、量子化学与无机化学教科书中,都有关于对称性的章节。

在各种不同的分子对称性研究架构中,群论是一项主流。这个架构在分子轨域的对称性研究中也很有用,例如应用Hückel分子轨道法、配位场理论和Woodward-Hoffmann规则等。另一个规模较大的架构,是利用晶体系统来描述材料的晶体对称性。

实际测定分子的对称性有许多技术,包括X射线晶体学和各种形式的光谱。光谱学符号是以各种对称条件为基础。

分子对称性的研究是取自于数学上的群论。

分子对称性可分成5种对称元素。

这5种对称元素都有其对称操作。对称操作为了与对称元素作区别,通常但不绝对的,会加上脱字符号。所以Ĉn是一个分子绕轴旋转,而Ê为其恒等元素操作。一个对称元素可以有一个以上与它相关的对称操作。因为 C1 与 E、S1 与 σ 、 S2 与 相等,所有的对称操作都可以分成真转动或非真转动(proper or improper rotations)。

点群是一组对称操作 (symmetry operation),符合数论中群的定义,在群中的所有操作中至少有一个固定不变。三维空间中有32组这样的点群(英语:point groups in three dimensions),其中的30组与化学相关。 它们以向夫立符号为分类基础。

一个对称操作的集合组成一个群,with operator the application of the operations itself,当:

群的阶为该群中对称操作的数目。

例如,水分子的点群是 C2v,对称操作是 E, C2, σv 和 σv'。它的顺序为 4。每一个操作都是它本身的相反。 以一个例子做结,在一个σv反射后做再一个 C2旋转会是一个σv' 对称操作 (注意:"在 B后做 A操作形成 C 记作 BA = C"):

σv*C2 = σv'

下表为典型分子的点群列表。

对称操作可用许多方式表示。一个方便的表征是使用矩阵。在直角坐标系中,任一个向量代表一个点,将其以对称操作转换左乘(left-multiplying)得出新的点。结合操作则为矩阵的乘法: C2v 的例子如下:

像这样的表示虽然存在无限多个,但是群的不可约表示(或)被普遍使用,因为所有其他的群的表示可以被描述为一个不可约表示的线性组合。

对每个点群而言,一个特征表汇整了它的对称操作和它的不可约表示(irreducible representations)的资料。因为它总是与不可约表示的数量和对称操作的分类相等,所以表格都是正方形。

表格本身包含了当使用一个特定的对称操作时,特定的不可约表示如何转换的特征。在一个分子点群中的任一作用于分子本身的对称操作,将不会改变分子点群。但作用于一般实体,例如一个向量或一个轨域,这方面的需求并非如此。矢量可以改变符号或方向,轨域可以改变类型。对于简单的点群,值不是 1 就是 −1:1表示符号或相位(矢量或轨域)在对称操作的作用下是不变的(对称),而 −1表示符号变成(不对称)

根据下列的规定标示表征:

表中还记录如下的资料:笛卡尔矢量及其如何旋转,和它的二次方程的如何用群的对称操作来转换,特别是以相同方法转换不可约表示。这些资料一般显示在表格的右边。这些资料是有用的,因为分子中的化学重要轨道(特别是和轨道)具有相同的对称性。

下表为C2v对称点群特征表:

承接C2v的例子,考虑水分子中氧原子的轨域:2x垂直于分子平面,且以一个 C2 与一个 σv'(yz) 操作改变符号,但与其他两个操作仍保持不变(显而易见的,恒等操作的特征恒为+1)。因此这个轨域的特征集合为( 1, −1, 1, −1),与B1不可约表示相符合。同样地,2z轨域被认为有A1不可约表示的对称性, 2y B2,和 3xy轨域 A2。这些分配和其他的都在表格最右边的两个字段中注明。

1929年时,汉斯·贝特在他的配位场理论研究中使用点群操作来作描述,尤金·维格纳则使用群论解释分子振动。拉斯洛·蒂萨(英语:László Tisza)(1933)整理出第一个特征表,之后再加入振动光谱。罗伯特·S·马利肯为第一个将特征表以英文发表的人(1933),埃德加·布莱特·威尔逊(英语:Edgar Bright Wilson)在1934年用它来预测振动的简正波的对称性。 Rosenthal与Murphy在1936年发表32点群的完整集合。

相关

  • 药效学药物效应动力学(英语:Pharmacodynamics (PD) ),简称药效学,是药理学的一个分支,主要研究药物作用(action)与药理效应(effects)(即药物对机体的作用及作用机制(mechanism of action)
  • EngadgetEngadget是一个关于消费电子产品的流行科技博客与播客。该博客曾赢得数个奖项。现时Engadget拥有九个不同网站,全都以各自的员工同时地运作,以各自的语言覆盖全球不同地方的科
  • Pregabalin普加巴林(英语:Pregabalin), 是一款被用作治疗癫痫, 神经性疼痛, 纤维肌痛, 及 广泛性焦虑症 的药物。普瑞巴林是神经传导物质γ-氨基丁酸的衍生物,也是种强效的加巴喷丁类化
  • 自扩散依照IUPAC定义,自扩散(self-diffusion)系数是指化学势梯度为零时,物质 i {\displaystyle i} 的扩散系数
  • 偶像同志偶像(英语:Gay icon)是指被很多女同性恋者、男同性恋者、双性恋者、跨性别者(LGBT)群体支持的公众人物。一些主要的同志偶像的特质通常包括魅力、华丽、坚强面对逆境、以及双
  • 加洛林板块加洛林板块是新畿内亚以北的小型板块,与西面的鸟首板块和南面的木百灵板块边界形成隐没带,北面与太平洋板块相接形成转形断层,而与菲律宾板块之间形成聚合板块边缘。
  • 张穆张穆(1805年-1849年),名瀛暹,字诵风,一字硕州,号石舟,山西平定人。祖父张佩芳,官寿州、泗州知州,曾纂修《歙县志》、《黄山志》。父张敦颐官殿试收掌官。生于嘉庆十年(1805年),十一岁丧母
  • 起义犹太战争,亦称大起义或犹太人大起义,是位于地中海东岸黎凡特的犹太人在公元66年至135年间,对抗罗马帝国的一连串战争大规模的起义。历史上第一次的犹太-罗马战争(公元66-73年)以
  • 泸州市泸州市(四川话拼音:Lu2zhou1;国际音标:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gent
  • 鄞州区.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings: