分子对称性

✍ dations ◷ 2025-11-26 06:55:06 #对称,理论化学

分子对称性描述分子的对称性表现并根据分子的对称性对分子作分类。分子对称性在化学中是一项基础概念,因为它可以预测或解释许多分子的化学性质,例如分子振动、分子的偶极矩和它的光谱学数据(以拉波特规则之类的选择定则为基础)。在大学程度的物理化学、量子化学与无机化学教科书中,都有关于对称性的章节。

在各种不同的分子对称性研究架构中,群论是一项主流。这个架构在分子轨域的对称性研究中也很有用,例如应用Hückel分子轨道法、配位场理论和Woodward-Hoffmann规则等。另一个规模较大的架构,是利用晶体系统来描述材料的晶体对称性。

实际测定分子的对称性有许多技术,包括X射线晶体学和各种形式的光谱。光谱学符号是以各种对称条件为基础。

分子对称性的研究是取自于数学上的群论。

分子对称性可分成5种对称元素。

这5种对称元素都有其对称操作。对称操作为了与对称元素作区别,通常但不绝对的,会加上脱字符号。所以Ĉn是一个分子绕轴旋转,而Ê为其恒等元素操作。一个对称元素可以有一个以上与它相关的对称操作。因为 C1 与 E、S1 与 σ 、 S2 与 相等,所有的对称操作都可以分成真转动或非真转动(proper or improper rotations)。

点群是一组对称操作 (symmetry operation),符合数论中群的定义,在群中的所有操作中至少有一个固定不变。三维空间中有32组这样的点群(英语:point groups in three dimensions),其中的30组与化学相关。 它们以向夫立符号为分类基础。

一个对称操作的集合组成一个群,with operator the application of the operations itself,当:

群的阶为该群中对称操作的数目。

例如,水分子的点群是 C2v,对称操作是 E, C2, σv 和 σv'。它的顺序为 4。每一个操作都是它本身的相反。 以一个例子做结,在一个σv反射后做再一个 C2旋转会是一个σv' 对称操作 (注意:"在 B后做 A操作形成 C 记作 BA = C"):

σv*C2 = σv'

下表为典型分子的点群列表。

对称操作可用许多方式表示。一个方便的表征是使用矩阵。在直角坐标系中,任一个向量代表一个点,将其以对称操作转换左乘(left-multiplying)得出新的点。结合操作则为矩阵的乘法: C2v 的例子如下:

像这样的表示虽然存在无限多个,但是群的不可约表示(或)被普遍使用,因为所有其他的群的表示可以被描述为一个不可约表示的线性组合。

对每个点群而言,一个特征表汇整了它的对称操作和它的不可约表示(irreducible representations)的资料。因为它总是与不可约表示的数量和对称操作的分类相等,所以表格都是正方形。

表格本身包含了当使用一个特定的对称操作时,特定的不可约表示如何转换的特征。在一个分子点群中的任一作用于分子本身的对称操作,将不会改变分子点群。但作用于一般实体,例如一个向量或一个轨域,这方面的需求并非如此。矢量可以改变符号或方向,轨域可以改变类型。对于简单的点群,值不是 1 就是 −1:1表示符号或相位(矢量或轨域)在对称操作的作用下是不变的(对称),而 −1表示符号变成(不对称)

根据下列的规定标示表征:

表中还记录如下的资料:笛卡尔矢量及其如何旋转,和它的二次方程的如何用群的对称操作来转换,特别是以相同方法转换不可约表示。这些资料一般显示在表格的右边。这些资料是有用的,因为分子中的化学重要轨道(特别是和轨道)具有相同的对称性。

下表为C2v对称点群特征表:

承接C2v的例子,考虑水分子中氧原子的轨域:2x垂直于分子平面,且以一个 C2 与一个 σv'(yz) 操作改变符号,但与其他两个操作仍保持不变(显而易见的,恒等操作的特征恒为+1)。因此这个轨域的特征集合为( 1, −1, 1, −1),与B1不可约表示相符合。同样地,2z轨域被认为有A1不可约表示的对称性, 2y B2,和 3xy轨域 A2。这些分配和其他的都在表格最右边的两个字段中注明。

1929年时,汉斯·贝特在他的配位场理论研究中使用点群操作来作描述,尤金·维格纳则使用群论解释分子振动。拉斯洛·蒂萨(英语:László Tisza)(1933)整理出第一个特征表,之后再加入振动光谱。罗伯特·S·马利肯为第一个将特征表以英文发表的人(1933),埃德加·布莱特·威尔逊(英语:Edgar Bright Wilson)在1934年用它来预测振动的简正波的对称性。 Rosenthal与Murphy在1936年发表32点群的完整集合。

相关

  • 嗜肺军团菌嗜肺军团菌是一种有鞭毛,革兰氏阴性,军团菌属多形态性的短小球杆菌。嗜肺军团菌是一种原发的人类病原体,会引发军团病。嗜肺军团菌不抗酸,无孢子,无荚膜,类似于杆菌。不能分解明胶
  • 温带温带(英语:Temperate climate、德语:Gemäßigte Zone、法语:Climat tempéré),在地理学上,是位于热带和极圈之间的气候带。北半球温带区的范围是从北纬23.5°的北回归线到北纬66.
  • 约翰内斯·开普勒约翰内斯·开普勒(德语:Johannes Kepler,德语:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000
  • 电影史电影史跨越了从19世纪末期至21世纪初的一百多年。电影作为一种活动影像也渐渐由聚众猎奇发展成为21世纪大众传媒、交流与娱乐的重要工具之一。电影也在艺术、科技与政治领域
  • 古文明四大文明古国,或称四大古文明,一般指古埃及、美索不达米亚(古巴比伦位于今伊拉克)、古印度及中国此四处人类文明最早诞生的地区。四大文明古国是四大古文明的旧称,而四大古文明也
  • 硅氧树脂硅氧聚合物亦称为硅酮、硅利康(polymerized siloxanes或polysiloxanes,俗称silicone),是一个介于有机与无机的聚合物,其化学式为n,其R=甲基、苯基等有机集团。这些材料由无机硅氧
  • 西伯利亚暗色岩西伯利亚暗色岩(俄语:Сибирские траппы,英文:Siberian Traps)又译西伯利亚玄武岩,是个巨大火成岩区,位于俄罗斯西伯利亚。西伯利亚玄武岩的形成时间,介于二叠纪与三
  • 福州船政学堂船政学堂,源自1866年(清同治五年)清朝船政大臣沈葆祯于福建福州马尾港所设的海军学院,又称“福建船政学堂”、“福州船政学堂”或“马尾水师学堂”。船政学堂最初称“求是堂艺局
  • 高仰云高仰云,陕西米脂人。1924年考入陕北联合县立榆林中学,1927年5月加入中国共产党。1958年调任南开大学党委书记兼副校长,文化大革命期间遭受批斗迫害,1968年7月27日于天津大学投湖
  • 特伦顿特伦顿(英语:Trenton, New Jersey)是新泽西州的州府、默瑟县县治。位于该州中部,西隔特拉华河与宾夕法尼亚州相望。特伦特是新泽西州文化重镇,新泽西州博物馆、新泽西州图书馆、