黎曼球面

✍ dations ◷ 2025-07-05 14:29:09 #黎曼曲面,射影几何

数学上,黎曼球面是一种将复平面加上一个无穷远点的扩张,使得下面这类公式至少在某种意义下有意义

它由19世纪数学家黎曼而得名。也称为

从纯代数的角度,复数加上一个无穷远点构成一个数系称为扩充复数。无穷远点的算数有时和一般的代数规则不符,因此扩充复数不构成一个代数域。但是,黎曼球面在几何和解析角度都行为良好,甚至在无穷远点也不例外;它是一个一维复流形,也称黎曼曲面。

复分析中,黎曼球面对于亚纯函数这个优雅的理论很有帮助。黎曼球面在射影几何和代数几何中作为复流形、射影空间和代数簇的基本例子到处出现。它在涉及分析和几何的其他学科也很有用,譬如量子力学和物理学其他分支。

作为一维复流形,黎曼曲面可以由两个图卡描述,每个的定义域都是复数平面 C {\displaystyle \mathbb {C} } 。因而该度量必须通过球极投影等度于 R 3 {\displaystyle \mathbb {R} ^{3}} 代表(作为微分流形或者拓扑流形的)球面。按照单值化定理,存在唯一的上的复结构。由此可见,上的度量和球面度量共形等价。所有这样的度量构成一个共形类。因此"圆球"度量不是黎曼球面的内在度量,因为"圆形"并不是共形几何的不变量。黎曼球面只是一个共形流形而非黎曼流形。但是,如果需要用到黎曼球面上的黎曼度量,圆形度量是一个很自然的选择。

理解数学对象的自同构群有助于对该对象的研究,自同构也就是对象到自身保持其基本结构不变的映射。对于黎曼球面,自同构就是黎曼球面到自身的可逆双全纯映射。唯一可能的这样的映射只有莫比乌斯变换。这些变换有如下形式:

其中 a {\displaystyle a} b {\displaystyle b} c {\displaystyle c} 、和 d {\displaystyle d} 为复数,满足 a d b c 0 {\displaystyle ad-bc\neq 0} .莫比乌斯变换的例子包括膨胀,旋转,平移,和复倒数。事实上,所有莫比乌斯变换可以有这些特例的复合得到。

将莫比乌斯变换视作复射影线上的变换很有益。在射影座标下,变换 f {\displaystyle f} 可以写作

这样,莫比乌斯变换可以表述为行列式非零的 2 × 2 {\displaystyle 2\times 2} 复矩阵;两个矩阵产生同样的莫比乌斯变换当且仅当他们只差一个非零常数。这样莫比乌斯变换恰好对应于射影线性变换 P G L 2 ( C ) {\displaystyle \mathrm {PGL} _{2}(\mathbb {C} )} .

如果赋予黎曼球面富比尼-施图迪度量,则不是所有的莫比乌斯变换是等度的;例如膨胀和平移就不是。等度变换构成 P G L 2 ( C ) {\displaystyle \mathrm {PGL} _{2}(\mathbb {C} )} 的一个子群,也即 P S U 2 {\displaystyle \mathrm {PSU} _{2}} .该子群同构于旋转群 S O ( 3 ) {\displaystyle \mathrm {SO} (3)} ,它是单位球在 R 3 {\displaystyle \mathbb {R} ^{3}} 中的等度群。

复分析中,复平面(或者任何黎曼曲面)上的的亚纯函数是两个全纯函数 f {\displaystyle f} g {\displaystyle g} 的比值 f / g {\displaystyle f/g} .作为到复数的映射,任何 g {\displaystyle g} 为零的地方,它就没有定义。但是,它引出了一个全纯映射 ( f , g ) {\displaystyle (f,g)} 到复射影线,甚至在 g = 0 {\displaystyle g=0} 处也有定义。这个构造对于研究全纯和亚纯函数很有用。例如,紧致黎曼曲面上不存在存在非常数复值全纯映射,但是有很多到复射影线上的全纯映射。

黎曼球面有很多物理中的应用。量子力学中,复射影线上的点是光子极化态,自旋为1/2的重亚原子粒子和一般二态粒子的的自旋态的自然取值。黎曼球面被推荐为天体球面的广义相对论模型。弦论中,弦的世界面是黎曼曲面,而黎曼球面作为最简单的黎曼曲面有重要的作用。它在扭子理论中也很重要。

相关

  • 产气荚膜梭菌产气荚膜杆菌(学名:Clostridium perfringens)是革兰氏阳性杆状厌氧菌,因能分解肌肉和结缔组织中的糖类而产出大量气体以及可以在体内能形成荚膜而得名。发现于人类和其他脊椎动
  • 十大死因此表搜集自西元2014年(民国103年)起,台湾年度十大死因。死因以导致死亡的原始病因为基准,由中华民国卫生福利部按年发布死因统计,目前系以国际疾病分类标准第 10 版(ICD-10)进行分
  • 25宪法正文I ∙ II ∙ III ∙ IV ∙ V ∙ VI ∙ VII其它修正案 XI ∙ XII ∙ XIII ∙ XIV ∙ XV XVI ∙ XVII ∙ XVIII ∙ XIX ∙ XX XXI ∙ XXII ∙ XXIII ∙
  • VCAM-11IJ9、​1VCA、​1VSC741222329ENSG00000162692ENSMUSG00000027962P19320P29533NM_080682、NM_001078、NM_001199834NM_011693NP_001069、NP_001186763、NP_542413NP_035823
  • 突厥裔日本人突厥裔日本人是指日本的突厥语族居民,包括鞑靼人和土耳其人。但即使日本支持泛突厥主义,有时突厥人依然被认为外人而受排斥。在2015年的东京犯罪率普查中,他们是日本朝鲜族后第
  • 欧阳中鹄欧阳中鹄(1849年-1911年),字节吾,号瓣姜,湖南浏阳人,清朝政治人物、举人出身。欧阳予倩的祖父。同治十二年,乡试中举,次年考入内阁中书,教授谭嗣襄、谭嗣同、唐才常等。光绪二十九年,授
  • 梁博梁博(1991年3月25日-),生于吉林省长春市,中国大陆音乐唱作人、流行摇滚歌手。梁博毕业于吉林艺术学院,2012年赢得第一季《中国好声音》的总冠军而出道。他是中国知名音乐唱作人,曾
  • 拉涅里·马兹利帕斯库亚尔·拉涅里·马兹利(Pascoal Ranieri Mazzilli,1910年4月27日-1975年4月21日),巴西政治家。于1961年及1964年先后两次成为巴西总统。马兹利从政以前,曾经为陶巴特一名收税
  • 奥普提马顿军区奥普提马顿军区(希腊语:Ὀπτιμάτοι,拉丁语:Optimates,希腊文意为“人中龙凤”)起初是作为东罗马的精英军事单位而存在的。然而在8世纪中期退化沦为用以提供补给和运输的军
  • 加贺美早纪加贺美早纪(1985年2月26日-),出身于日本千叶县佐仓市的女演员。2001年从12083人中脱颖而出,参与饭岛爱的半自传性的小说《柏拉图式性爱》改编电影演出,饰演少女葵。2011年,所属事务