自避行走

✍ dations ◷ 2025-06-07 17:26:04 #计算化学,计算物理学,离散几何,多边形,随机过程

在数学中,自避行走(简称:SAW,Self-Avoiding Walk)是一种格点上的随机漫步,但是不会多次访问同一点。所以SAW不是一种马尔可夫链。SAW模型在物理学、化学、生物学中有很多应用。


自避行走是一个分形。 例如,

没有已知的公式来计算给格子的SAW数。

× 矩形点阵在只允许选择减少曼哈顿距离的方向从一角往其对角行走的情况下有

个SAW。

主要条目:普遍性 (物理学)

c n {\displaystyle c_{n}} 是SAW数。这满足 c n c m c n + m {\displaystyle c_{n}c_{m}\leq c_{n+m}} 所以 log c n {\displaystyle \log c_{n}} 是次可加的以及

μ = lim n c n 1 / n {\displaystyle \mu =\lim _{n\to \infty }c_{n}^{1/n}}

存在。格点六角形(hexagonal lattice)的 μ = 2 + 2 {\displaystyle \mu ={\sqrt {2+{\sqrt {2}}}}} 。(斯坦尼斯拉夫·斯米尔诺夫)

有猜想说:当 n {\displaystyle n\to \infty } 的时候

c n μ n n 11 / 32 {\displaystyle c_{n}\approx \mu ^{n}n^{11/32}}

上面的 μ {\displaystyle \mu } 依赖格点,但是11/32这个数是普遍的。

相关

  • 酒精乙醇(英语:Ethanol,结构简式: CH 3
  • 安道尔安道尔公国(加泰罗尼亚语:Principat d'Andorra),也译作安道拉亲王国,通称安道尔,为一微型国家,国土面积468平方千米。是西南欧的内陆亲王国,位于比利牛斯山脉东南部,毗邻法国和西班牙
  • 链形植物轮藻门 有胚植物链型植物(英语:Streptophytina)是植物中的一大类群,包括轮藻门(广义上的轮藻)和有胚植物(现存的陆生植物:苔藓维管植物)两大类。
  • 苏珊·安东尼纪念币苏珊·安东尼一美元硬币(英语:Susan B. Anthony dollar)是1979至1981年间出产的一种1美元硬币,1981年时因公众反响不佳而停产,1999年又再度生产。这种硬币的诞生是为取代过于臃肿
  • 豹狮豹狮,或豹狮兽(学名:Panthera pardus × leo )是雄豹与雌狮杂交后的产物,其头部像狮子,而身体则长有豹斑,体型比豹子大,喜欢攀爬和戏水。多是人类影响或主使之下的产物,而不是自然交
  • 恰恰 (白兰地)恰恰(格鲁吉亚语:ჭაჭა)是乔治亚的一种白兰地。恰恰酒色透明,度数较高,有时会使用未成熟的葡萄或野生的葡萄制作。有些恰恰使用无花果或瓯柑、橙子、桑果等其他水果或香草制作
  • 荚状高积云荚状高积云(学名:Altocumulus lenticularis,缩写: 或 ),是高积云的一种。荚状高积云亦具有高积云的特征:由片状的、形似透镜或杏仁的云组成;云体通常被拉得很长,且有清晰可辨的轮廓
  • 二烯丙基二硫二烯丙基二硫(英语:diallyl disulfide,缩写DADS)又叫4,5-二硫杂-1,7-辛二烯(4,5-dithia-1,7-octadiene),是一种有机硫化合物,常见于葱属植物中,如洋葱和大蒜。二烯丙基二硫、二烯丙基
  • 灭迹合唱团灭迹合唱团(ERASURE)是英国的一个音乐组合,包含词曲创作兼键盘手文斯·克拉克和歌手安迪·贝尔。1985年,他们以处女作“Who Needs Love Like That”进入音乐界。随着第4个作品“
  • 和平谷犹太会堂和平谷犹太会堂(土耳其语:Neve Şalom Sinagogu, 希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezr