旋转不变性

✍ dations ◷ 2025-01-23 11:57:59 #守恒定律

在数学里,给予一个定义于内积空间的函数,假若对于任意旋转,函数的参数值可能会改变,但是函数的数值仍旧保持不变,则称此性质为旋转不变性(rotational invariance),或旋转对称性(rotational symmetry),因为函数对于旋转具有对称性。例如,假设以xyz-参考系的原点为固定点,任意旋转xyz-参考系,而函数 f ( x , y , z ) = x 2 + y 2 + z 2 {\displaystyle f(x,\,y,\,z)=x^{2}+y^{2}+z^{2}} 的数值保持不变,因此,函数 f ( x , y , z ) {\displaystyle f(x,\,y,\,z)} 对于任意旋转具有不变性,或对于任意旋转具有对称性。

在物理学里,假若物理系统的性质跟它在空间的取向无关,则这系统具有旋转不变性。根据诺特定理,假若物理系统的作用量具有旋转不变性,则角动量守恒。

根据物理学家多年来仔细研究的结果,到目前为止,所有的物理基础定律都具有旋转不变性。

假设一个量子系统的位势为球对称位势 V ( r ) {\displaystyle V(r)} ,其哈密顿算符 H {\displaystyle H} 可以表示为

其中, {\displaystyle \hbar } 是约化普朗克常数, m {\displaystyle m} 是质量, r {\displaystyle r} 是径向距离。

现在,以 z-轴为旋转轴,旋转此系统的 x-轴与 y-轴 θ {\displaystyle \theta } 角弧,则新直角坐标 r = ( x , y , z ) {\displaystyle \mathbf {r} '=(x',\,y',\,z')} 与旧直角坐标的关系式为

偏导数为

那么,导数项目具有旋转不变性:

由于径向距离具有旋转不变性:

旋转之后,新的哈密顿算符 H {\displaystyle H'}

所以,球对称位势量子系统的哈密顿算符具有旋转不变性。

假设一个量子系统的位势为球对称位势 V ( r ) {\displaystyle V(r)} ,则哈密顿算符具有旋转不变性。定义旋转算符 R {\displaystyle R} 为一个对于 z-轴的无穷小旋转 δ θ {\displaystyle \delta \theta } 。则正弦函数与余弦函数可以分别近似为

新直角坐标与旧直角坐标之间的关系式为

R {\displaystyle R} 作用于波函数 ψ ( x , y , z ) {\displaystyle \psi (x,\,y,\,z)}

其中, L z {\displaystyle L_{z}} 是角动量的 z-分量, L z = x p y y p x = i ( x y y x ) {\displaystyle L_{z}=xp_{y}-yp_{x}=-i\hbar \left(x{\frac {\partial }{\partial y}}-y{\frac {\partial }{\partial x}}\right)}

所以,旋转算符 R {\displaystyle R} 可以表达为

假设 ψ E ( r ) {\displaystyle \psi _{E}(\mathbf {r} )} 是哈密顿算符的能级本征态,则

由于 r {\displaystyle \mathbf {r} } 只是一个虚设变数,

在做一个微小旋转之后,

所以, ( R H H R ) ψ E ( r ) = 0 {\displaystyle (RH-HR)\psi _{E}(\mathbf {r} )=0} 。哈密顿算符的能级本征态 ψ E ( r ) {\displaystyle \psi _{E}(\mathbf {r} )} 形成一组完备集 (complete set),旋转算符和哈密顿算符的对易关系是

因此,

根据埃伦费斯特定理, L z {\displaystyle L_{z}} 的期望值对于时间的导数是

所以,

由于 L z {\displaystyle L_{z}} 显性地不含时间,

总结, L z {\displaystyle \langle L_{z}\rangle } 不含时间, L z {\displaystyle L_{z}} 是个运动常数。角动量的 z-分量守恒。类似地,可以导出其它分量也拥有同样的性质。所以,整个角动量守恒。

相关

  • SClsub2/sub二氯化硫是一个无机化合物,分子式为SCl2。二氯化硫是有刺激性臭味的红棕色液体,具腐蚀性,遇水反应产生氯化氢。二氯化硫对眼和上呼吸道粘膜有强烈刺激性,误触后会产生严重皮肤烧
  • 犁耙犁是一种耕作的农具,用途是破碎土块并耕出槽沟,从而为播种做好准备。犁也可以将较深层的土翻到表面上。犁是在一根横梁端部的厚重的刃构成,通常系在一组牵引它的牲畜或机动车上
  • 汤米·汤普森汤米·乔治·汤普森(Tommy George Thompson,1941年11月19日威斯康星州埃尔罗伊),美国政治家,美国共和党成员,曾任威斯康星州州长(1987年-2001年)、美国卫生与公众服务部长(2001年-200
  • 巴塞尔协议III巴塞尔协议III(英语:Basel III)是由国际清算银行制定,同时得到世界各主要经济体的中央银行(即巴塞尔银行监理委员会)参与制定并同意实施的全球金融监管标准。作为巴塞尔协议的第三
  • Platyzoa扁虫动物原本是扁形动物门的同义词,此处是几个门的统称,属于两侧对称动物,也被归类为扁虫动物总门(学名:Platyzoa),但此分类尚未成为共识。本总门包括以下门:扁形动物和腹毛动物没有
  • 加利福尼亚路德大学加利福尼亚路德大学(California Lutheran University,简称:CLU或Cal Lutheran)是位于美国加利福尼亚州绍曾德奥克斯的一所私立大学,由美国福音信义会创立于1959年。成立不久之后
  • 北京市医疗机构列表本表列出今北京市境内各级各类医疗机构(无《医疗机构执业许可证》者须注明情况)。
  • 汕尾岛屿中国广东省汕尾市共有大约21个岛屿,当中大部分岛屿都是位于红海湾至汕尾半岛的南中国海水域。就行政隶属而言,汕尾市区占岛屿数最多。同时,汕尾是全广东省境内唯一拥有珊瑚岛的
  • 长兴岛长兴岛是位于中国长江入海口处的冲积岛,现面积88平方公里,本地人口约3.6万人,全岛即上海市崇明区长兴镇的行政区域。长兴岛浮出水面,最早成型于明崇祯十七年(1644年),清道光二十二
  • 郑 明郑明可以指: