旋转不变性

✍ dations ◷ 2025-04-04 05:57:58 #守恒定律

在数学里,给予一个定义于内积空间的函数,假若对于任意旋转,函数的参数值可能会改变,但是函数的数值仍旧保持不变,则称此性质为旋转不变性(rotational invariance),或旋转对称性(rotational symmetry),因为函数对于旋转具有对称性。例如,假设以xyz-参考系的原点为固定点,任意旋转xyz-参考系,而函数 f ( x , y , z ) = x 2 + y 2 + z 2 {\displaystyle f(x,\,y,\,z)=x^{2}+y^{2}+z^{2}} 的数值保持不变,因此,函数 f ( x , y , z ) {\displaystyle f(x,\,y,\,z)} 对于任意旋转具有不变性,或对于任意旋转具有对称性。

在物理学里,假若物理系统的性质跟它在空间的取向无关,则这系统具有旋转不变性。根据诺特定理,假若物理系统的作用量具有旋转不变性,则角动量守恒。

根据物理学家多年来仔细研究的结果,到目前为止,所有的物理基础定律都具有旋转不变性。

假设一个量子系统的位势为球对称位势 V ( r ) {\displaystyle V(r)} ,其哈密顿算符 H {\displaystyle H} 可以表示为

其中, {\displaystyle \hbar } 是约化普朗克常数, m {\displaystyle m} 是质量, r {\displaystyle r} 是径向距离。

现在,以 z-轴为旋转轴,旋转此系统的 x-轴与 y-轴 θ {\displaystyle \theta } 角弧,则新直角坐标 r = ( x , y , z ) {\displaystyle \mathbf {r} '=(x',\,y',\,z')} 与旧直角坐标的关系式为

偏导数为

那么,导数项目具有旋转不变性:

由于径向距离具有旋转不变性:

旋转之后,新的哈密顿算符 H {\displaystyle H'}

所以,球对称位势量子系统的哈密顿算符具有旋转不变性。

假设一个量子系统的位势为球对称位势 V ( r ) {\displaystyle V(r)} ,则哈密顿算符具有旋转不变性。定义旋转算符 R {\displaystyle R} 为一个对于 z-轴的无穷小旋转 δ θ {\displaystyle \delta \theta } 。则正弦函数与余弦函数可以分别近似为

新直角坐标与旧直角坐标之间的关系式为

R {\displaystyle R} 作用于波函数 ψ ( x , y , z ) {\displaystyle \psi (x,\,y,\,z)}

其中, L z {\displaystyle L_{z}} 是角动量的 z-分量, L z = x p y y p x = i ( x y y x ) {\displaystyle L_{z}=xp_{y}-yp_{x}=-i\hbar \left(x{\frac {\partial }{\partial y}}-y{\frac {\partial }{\partial x}}\right)}

所以,旋转算符 R {\displaystyle R} 可以表达为

假设 ψ E ( r ) {\displaystyle \psi _{E}(\mathbf {r} )} 是哈密顿算符的能级本征态,则

由于 r {\displaystyle \mathbf {r} } 只是一个虚设变数,

在做一个微小旋转之后,

所以, ( R H H R ) ψ E ( r ) = 0 {\displaystyle (RH-HR)\psi _{E}(\mathbf {r} )=0} 。哈密顿算符的能级本征态 ψ E ( r ) {\displaystyle \psi _{E}(\mathbf {r} )} 形成一组完备集 (complete set),旋转算符和哈密顿算符的对易关系是

因此,

根据埃伦费斯特定理, L z {\displaystyle L_{z}} 的期望值对于时间的导数是

所以,

由于 L z {\displaystyle L_{z}} 显性地不含时间,

总结, L z {\displaystyle \langle L_{z}\rangle } 不含时间, L z {\displaystyle L_{z}} 是个运动常数。角动量的 z-分量守恒。类似地,可以导出其它分量也拥有同样的性质。所以,整个角动量守恒。

相关

  • 经济思想史经济思想史(History of economic thoughts),有时也称为经济学史(history of economic theory),是通过对过去的经济理论发展和变迁的追溯,针对“经济对于人类意味着什么”这个根本问
  • 呈递交叉呈递是特定抗原呈现细胞吞噬并利用MHC I呈现外来抗原给细胞毒性T细胞的能力。交叉致敏,是交叉呈递后的结果,其描述的是透过交成呈递而使初始T细胞(英语:Naive T cell)变成活
  • 温带草原温带干旱半干旱气候,其中温带干旱气候又称温带沙漠气候,温带半干旱气候又称温带草原气候。是周淑贞气候分类法里中纬度气候带的一种气侯类型,此外,在柯本气候分类法中也有这一气
  • 德国航空航天中心德国航空航天中心(德语:Deutsches Zentrum für Luft- und Raumfahrt e.V.,缩写:DLR)是德国的国家级航天、能源与交通运输研究机构,总部设在科隆,并且设有多座分支机构。德国航空航
  • 尚·嘉宾尚·嘉宾(Jean Gabin)是一位法国演员,曾主演许多经典电影。尚·嘉宾出生于巴黎,双亲是玛德莲·普蒂(Madeleine Petit)与费迪南·蒙柯吉(Ferdinand Moncorgé)。
  • 台27线台27线,是台湾的一条省道,北起高雄市六龟区台20线荖浓,南至屏东县新园乡乌龙与台17线交会,全长79.241公里。并有一条支线,全线在六龟区境内,北起土垄湾(中庄)与台27线交会,南至新威和
  • 锥体束皮层脊髓束(英语:Corticospinal tract,又称皮质脊髓路径、皮质脊髓束、皮质脊髓径),又称锥状束(pyramidal tract),为一种大脑皮质及脊髓间大量聚集之轴突集结。皮质脊髓束大部分由运
  • 雨伞术语雨伞术语或伞式术语(Umbrella term)是一种比喻的说法,表示此术语涵盖几个术语而成的术语,或叫做概括性术语或者术语集术语,总术语。比如:密码学(cryptology)是一个总术语,它包括加密
  • 高概念高概念一词源自美国电影业1970年代中期开始的电影生产与发行方式,透过大型的预算、鲜明清晰的剧情结构以及不断行销宣传以及众多周边商品的推动,来造就票房的电影生产策略。也
  • 坎合巴祖赫语祖赫语是属于坎合巴祖赫语族的马雅语,主要分布于危地马拉西部。实际上有两种语言都叫做祖赫语。第一种是 San Sebastián Coatán 自治市祖赫语(ISO 639-3:cac),第二种为 San Mat