量纲分析

✍ dations ◷ 2025-01-23 17:50:53 #量纲分析
物理量的量纲可以用来分析或检核几个物理量之间的关系,这方法称为量纲分析(dimensional analysis)。通常,一个物理量的量纲是由像质量、长度、时间、电荷量、温度一类的基础物理量纲结合而成。例如,速度的量纲为长度每单位时间,而计量单位为米每秒、英里每小时或其它单位。量纲分析所根据的重要原理是,物理定律必需跟其计量物理量的单位无关。任何有意义的方程式,其左手边与右手边的量纲必需相同。检查有否遵循这规则是做量纲分析最基本的步骤。推导获得的方程式或计算结果是否基本上合理,惯常可以用量纲分析来检察。对于较复杂的物理状况,量纲分析也可以用来构筑合理假定(参见关联模型),然后,做严格的实验加以测试,或用已发展成功的理论仔细检试。量纲分析能够按照各种物理量的量纲,将它们详细分类。早在十七世纪,艾萨克·牛顿就已经提出量纲分析的基本原理,现在知名为“牛顿相似性原理”。在建立量纲分析的现代用法上,詹姆斯·马克士威也扮演了重要的角色,他区分质量、长度、时间的计量单位为“基础单位”,又将其它单位分类为“衍生单位”。十九世纪法国数学家约瑟夫·傅立叶也做出巨大贡献。他表明,类似牛顿第二定律 F = m a {displaystyle mathbf {F} =mmathbf {a} } 的物理定律,其方程式应该与计量物理量的单位无关。这引致出重要结论:有意义的定律,对于其方程式的每一个计量单位,这方程式都必需是齐次方程式。这结果最终形式化成为白金汉π定理(Buckingham π theorem)。假设一个有物理意义的方程式具有 n {displaystyle n} 个变数与 m {displaystyle m} 个基础量纲,白金汉π定理描述怎样将这方程式等价地重写为具有 n − m {displaystyle n-m} 个无量纲参数的方程式。更重要的是,从设定的变数,这定理给出了一种能够计算这些无量纲参数的方法。通过无量纲化(nondimensionalization)技法,一个具有量纲的方程式可以降低或消除其量纲。这技法首先使用量纲分析,这技法使用系统的基础单位或大自然的自然单位来按比例改变物理量的数值。这技法可以使得物理学者更了解系统的基础性质。稍后,会有更详细说明。一个物理量的量纲是质量、长度、时间、电荷量、温度的结合,分别由符号M、L、T、Q、Θ代表,每一个都提升至有理数幂。注意到术语“量纲”比尺度“单位”更抽象:质量是一种量纲,而公斤是量纲为质量的一种尺度单位。对于每一种量纲,不同的标准制会规定不同的单位。例如,物理量速度的量纲是长度/时间(L/T或LT −1),物理量作用力的量纲是质量×长度/(时间的平方)(ML/T2 or MLT −2)。原则而言,其它种物理量的量纲也可以定义为基础量纲,可以替换上述几个量纲。例如,动量、能量或电流都可以选为基础量纲。有些物理学者不认为温度是基础量纲,因为温度表达为粒子的能量每自由度,这可以以能量(或质量、长度、时间)来表达。有些物理学者不认为电荷量是基础量纲;在厘米-克-秒制内,电荷量可以以质量、长度、时间共同结合在一起来表达。另外,还有一些物理学者怀疑,大自然存在着具有不相容基础量纲的物理量。计量单位与量纲密切相关,但内含的概念大不相同。物理量的单位是由常规定义,与标准制有关。例如,长度的单位可以是米、英尺、英哩或微米;但是,任何长度的量纲必定是L,这与单位无关。同一个物理量的两种不同的单位之间,是靠着转换因子(conversion factor)从一个单位转换到另一个单位。例如,1 in = 2.54 cm,注意到在这里“2.54 cm/in”是转换因子,不具有量纲,其数值等于1。因此,假若将任何物理量乘以转换因子,得到的结果数值不变。量纲符号与量纲符号之间,没有转换因子。量纲符号,像L,形成一个群:量纲符号形成一个有理数的向量空间。例如,量纲符号MiLjTk对应于向量(i,j,k)。当两个物理量(不论其量纲是否相同)相乘或相除,它们的量纲也同样的相乘或相除,这对应于相加或相减于向量空间。当物理量提升至有理数幂,其量纲也会提升至同样的有理数幂,这对应于标量乘法于向量空间。给定量纲符号的向量空间,其基底是以基础量纲为元素的集合,所有其它向量称为衍生量纲。如同在任何向量空间,有不同的基底可供自由选择,这会造成不同的单位制。例如,选择电荷量单位是衍生于电流单位,或反之亦可。无量纲物理量对应于向量空间的原点。白金汉π定理(Buckingham π theorem)阐明,对于某个物理问题,如果存在n个变量, 其中有m个基本量,则存在n-m个独立的无量纲参数,即可以将n个变量组合成n-m个无量纲π数。以简单摆运动为例,这个物理问题存在5个变量:摆球的质量 m {displaystyle m} 、 摆线的长度 l {displaystyle l} 、摆角 θ {displaystyle theta } 、时间 t {displaystyle t} 和重力加速度 g {displaystyle g} ,其中有3个基本量:质量、长度和时间,则存在2个独立的无量纲π数,如 Π 1 = l / g t 2 {displaystyle Pi _{1}={sqrt {l/gt^{2}}}} 和 Π 2 = θ {displaystyle Pi _{2}=theta } 。力可以透过艾萨克·牛顿著名的公式做量纲分析,代表质量量纲,代表长度量纲,代表时间量纲,则为:相应地,力的国际单位牛顿(N)的定义是:若力沿着一定路径作功:可以看出量纲上:另外,非相对论(即古典力学里)动能的定义:其量纲为:量纲和功相同。这也和功能定理相应。透过量纲分析可以对物理推导过程进行检验,确认前后是否一致无误。此外,一些物理学上的演绎是透过量纲分析而生的,例如普朗克长度、普朗克时间与普朗克质量。它们的出现最先是透过将普朗克常数、光速、重力常数三项常数组合出长度量纲、时间量纲、质量量纲而衍生得到它们应该具有的数值。

相关

  • MusicBrainzMusicBrainz是一个旨在创造开放数据音乐数据库的项目(类似Freedb),它原初的目的是针对光盘数据库(CDDB)中的限制,但如今已不再将目标局限于CD后设数据存储库,而扩大为一种结构化的
  • 防震地震工程,又名防震工程,是当建筑物受到地震影响时对其结构行为的研究,用以减少地震发生时对于建筑物的损害。它是结构设计和土木工程的一环。 乔治·豪司乐教授被视为现代地震
  • 辐射对称动物辐射对称动物(学名:Radiata)与两侧对称动物共同组成真后生动物,这些动物的外形呈标准的辐射对称。但其所包括的生物过多、在生物系统发生学上无法构成单系群,加上趋同演化作用,这
  • 尤金·维格纳尤金·保罗·维格纳(英语:Eugene Paul Wigner,1902年11月17日-1995年1月1日)原名维格纳·帕尔·耶诺(匈牙利语:Wigner Pál Jenő),匈牙利-美国理论物理学家及数学家,奠定了量子力学对
  • 直同志直同志(英语:Ally / Straight Ally / Heterosexual Ally)是指支持平权运动、性别平等及LGBT权利运动,并质疑同性恋恐惧、双性恋恐惧以及跨性别恐惧等问题的异性恋和顺性别人士
  • 元建模元模型(或称替代模型)是“模型的模型”, 元建模则指建立元模型的过程(meta-physics 为”形而上学“,即“科学的科学”)。因此,元建模的工作包括:分析、构建和开发一套用于给某类指定
  • 高云高云为云底高度6000米以上的云,并可再分为卷云、卷层云及卷积云三个类别。卷云是一种分散的云,像具有纤维组织的羽毛、头发。卷云没有云影,日出、日落时显示红色或橙红色。卷云
  • 血块血块是血液凝固后的产物,主要由血小板聚集,加上血液内含的凝血因子所构成,若是因身体损伤而形成,于生理上属于正常现象,但若造成血栓,则会带来病理上的影响。
  • 舞鹤舞鹤(1951年10月13日-),本名陈国城,台湾作家,成大中国文学系毕业,曾就读师大国文所、东华创作与英语文学研究所。
  • 反丁烯二酸延胡索酸(Fumaric Acid),又名富马酸、紫堇酸或地衣酸,即反丁烯二酸(IUPAC名为(E)-丁烯二酸),是一种无色、易燃的晶体,由丁烯衍生出的羧酸。它的化学式是C4H4O4。燃烧延胡索酸会释