首页 >
方差
✍ dations ◷ 2025-04-26 12:44:01 #方差
方差(英语:Variance),应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。这里把复杂说白了,就是将各个误差之平方(而非取绝对值,使之肯定为正数),相加之后再除以总数,透过这样的方式来算出各个数据分布、零散(相对中心点)的程度。继续延伸的话,方差的正平方根称为该随机变量的标准差(此为相对各个数据点间),方差除以期望值归一化的值叫分散指数,标准差除以期望值归一化的值叫变异系数。设X为服从分布F的随机变量,
如果E是随机变数X的期望值(平均数μ=E)
随机变量X或者分布F的方差为:这个定义涵盖了连续、离散、或两者都有的随机变量。方差亦可当作是随机变量与自己本身的协方差(或协方差):方差典型的标记有Var(X),
σ
X
2
{displaystyle scriptstyle sigma _{X}^{2}}
, 或是
σ
2
{displaystyle sigma ^{2}}
,其表示式可展开成为:上述的表示式可记为"平方的期望减掉期望的平方"。如果随机变量X是具有概率质量函数的离散概率分布x1 ↦ p1, ..., xn ↦ pn,则:此处
μ
{displaystyle mu }
是其期望值, i.e.当X为有N个相等概率值的平均分布:N个相等概率值的方差亦可以点对点间的方变量表示为:如果随机变量X是连续分布,并对应至概率密度函数f(x),则其方差为:此处
μ
{displaystyle mu }
是一期望值,且此处的积分为以X为范围的x定积分(definite integral)
如果一个连续分布不存在期望值,如柯西分布(Cauchy distribution),也就不会有方差(不予定义)。方差不会是负的,因为次方计算为正的或为零:一个常数随机变量的方差为零,且当一个资料集的方差为零时,其内所有项目皆为相同数值:方差不变于定位参数的变动。也就是说,如果一个常数被加至一个数列中的所有变量值,此数列的方差不会改变:如果所有数值被放大一个常数倍,方差会放大此常数的平方倍:两个随机变量合的方差为:此数Cov(., .)代表协方差。
对于
N
{displaystyle N}
个随机变量
{
X
1
,
…
,
X
N
}
{displaystyle {X_{1},dots ,X_{N}}}
的总和:在样本空间Ω上存在有限期望和方差的随机变量构成一个希尔伯特空间:
L2(Ω, dP),不过这里的内积和长度跟协方差,标准差还是不大一样。
所以,我们得把这个空间“除”常变量构成的子空间,也就是说把相差一个常数的
所有原来那个空间的随机变量做成一个等价类。这还是一个新的无穷维线性空间,
并且有一个从旧空间内积诱导出来的新内积,而这个内积就是协方差。如果X是一个向量其取值范围在实数空间Rn,并且其每个元素都是一个一维随机变量,我们就把X称为随机向量。随机向量的方差是一维随机变量方差的自然推广,其定义为E,其中μ = E(X),XT是X的转置。这个方差是一个非负定的方阵,通常称为协方差矩阵。如果X是一个复数随机变量的向量(向量中每个元素均为复数的随机变量),那么其方差定义则为E,其中X*是X的共轭转置向量或称为埃尔米特向量。根据这个定义,方差为实数。“方差”(variance)这个名词率先由罗纳德·费雪(英语:Ronald Fisher)在论文《The Correlation Between Relatives on the Supposition of Mendelian Inheritance》中提出。后来“半方差”(semi variance(英语:semivariance)),“亚方差”(hypo variance)“超方差”,(super variance)与“圆方差”(circular variance(英语:circular variance))等类似概念也被逐渐延伸出去。
相关
- 震颤颤抖或震颤(英语:Tremor)是身体部位因不自主肌肉收缩而造成的震动。最常发生在手部;通常是心脉所致,是正常生理现象。不过震颤严重者可能患有疾病。
- 腰围腰部是动物腹部的一部分,在肋骨以下,臀部以上。一般来说,腰部是躯干中最幼的部分。腰后的凹陷处又称腰窝,是传说中的维纳斯之眼。
- 阴道环阴道环(英语:Vaginal rings)是可挠聚合物材质的给药装置(英语:drug delivery),可置入阴道中,持续阴道内给药一段时间。有些阴道环也可以提供避孕效果(阴道避孕环)。阴道环不会因使用的
- 分布容积分布体积(VD),又称为拟似分布体积,是药理学的名词用作量化药物剂量服用后(不论是口服或是静脉注射)在体内的分布。它的定义是指一个药物剂量平均分布的体积,致使血液内的药物浓度达
- 托托(符号为Torr),与毫米汞柱(符号为mmHg)近乎等价,为压强、压力的单位,但并非国际单位制单位 (SI unit) 的成员之一。原本的 1 mmHg 是指“将幼细直管内的水银顶高一毫米之压力”,而正
- RNA聚合酶IIIRNA聚合酶III(又称Pol III)是真核细胞中通过转录DNA来合成核糖体5S rRNA、tRNA等小RNA的酶。由RNA Pol III转录的基因属于“管家”基因。因为这些基因需要在所有类型的细胞和
- 乡村音乐乡村音乐(英语:Country music),也称为乡村与西部(英语:Country and Western)或简称为乡村(英语:Country),是一种当代的流行音乐,起源于美国南部与阿帕拉契山区。乡村音乐的根源可追溯至1
- 柔道柔道是在1882年由日本人嘉纳治五郎创立的日本武术。它一般被归类于现代武术,后期慢慢演变为博击运动及被纳入奥运会比赛项目之一。柔道最特殊的的一点是其比赛的方式,目的是将
- 萨米埃尔·德尚普兰萨缪尔·德·尚普兰(法语:Samuel de Champlain,1574年8月13日-1635年12月25日)是法国探险家,地理学家,魁北克城的建立者。也是法国同北美贸易,特别是皮毛贸易的开拓者。尚普兰出生
- 铁矾土红土,指富含氧化铁,氧化铝,水氧化铁,水氧化铝,二氧化铁,二氧化铝的土,因富含氧化铁以致土壤发出棕色颜色,土质最好为黑土,最差为红土。 因长年下雨,导致腐植质储存不易,仅留下较重的氧