首页 >
方差
✍ dations ◷ 2025-11-08 04:44:38 #方差
方差(英语:Variance),应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。这里把复杂说白了,就是将各个误差之平方(而非取绝对值,使之肯定为正数),相加之后再除以总数,透过这样的方式来算出各个数据分布、零散(相对中心点)的程度。继续延伸的话,方差的正平方根称为该随机变量的标准差(此为相对各个数据点间),方差除以期望值归一化的值叫分散指数,标准差除以期望值归一化的值叫变异系数。设X为服从分布F的随机变量,
如果E是随机变数X的期望值(平均数μ=E)
随机变量X或者分布F的方差为:这个定义涵盖了连续、离散、或两者都有的随机变量。方差亦可当作是随机变量与自己本身的协方差(或协方差):方差典型的标记有Var(X),
σ
X
2
{displaystyle scriptstyle sigma _{X}^{2}}
, 或是
σ
2
{displaystyle sigma ^{2}}
,其表示式可展开成为:上述的表示式可记为"平方的期望减掉期望的平方"。如果随机变量X是具有概率质量函数的离散概率分布x1 ↦ p1, ..., xn ↦ pn,则:此处
μ
{displaystyle mu }
是其期望值, i.e.当X为有N个相等概率值的平均分布:N个相等概率值的方差亦可以点对点间的方变量表示为:如果随机变量X是连续分布,并对应至概率密度函数f(x),则其方差为:此处
μ
{displaystyle mu }
是一期望值,且此处的积分为以X为范围的x定积分(definite integral)
如果一个连续分布不存在期望值,如柯西分布(Cauchy distribution),也就不会有方差(不予定义)。方差不会是负的,因为次方计算为正的或为零:一个常数随机变量的方差为零,且当一个资料集的方差为零时,其内所有项目皆为相同数值:方差不变于定位参数的变动。也就是说,如果一个常数被加至一个数列中的所有变量值,此数列的方差不会改变:如果所有数值被放大一个常数倍,方差会放大此常数的平方倍:两个随机变量合的方差为:此数Cov(., .)代表协方差。
对于
N
{displaystyle N}
个随机变量
{
X
1
,
…
,
X
N
}
{displaystyle {X_{1},dots ,X_{N}}}
的总和:在样本空间Ω上存在有限期望和方差的随机变量构成一个希尔伯特空间:
L2(Ω, dP),不过这里的内积和长度跟协方差,标准差还是不大一样。
所以,我们得把这个空间“除”常变量构成的子空间,也就是说把相差一个常数的
所有原来那个空间的随机变量做成一个等价类。这还是一个新的无穷维线性空间,
并且有一个从旧空间内积诱导出来的新内积,而这个内积就是协方差。如果X是一个向量其取值范围在实数空间Rn,并且其每个元素都是一个一维随机变量,我们就把X称为随机向量。随机向量的方差是一维随机变量方差的自然推广,其定义为E,其中μ = E(X),XT是X的转置。这个方差是一个非负定的方阵,通常称为协方差矩阵。如果X是一个复数随机变量的向量(向量中每个元素均为复数的随机变量),那么其方差定义则为E,其中X*是X的共轭转置向量或称为埃尔米特向量。根据这个定义,方差为实数。“方差”(variance)这个名词率先由罗纳德·费雪(英语:Ronald Fisher)在论文《The Correlation Between Relatives on the Supposition of Mendelian Inheritance》中提出。后来“半方差”(semi variance(英语:semivariance)),“亚方差”(hypo variance)“超方差”,(super variance)与“圆方差”(circular variance(英语:circular variance))等类似概念也被逐渐延伸出去。
相关
- 工业发酵发酵工程是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种技术。发酵工程的内容包括菌种选育、培养基的配置
- 速率速率(英语:Speed)是物理学中的一个基本概念,是指物体在单位时间内经过的路程,用来表示物体运动的快慢程度。在日常生活中,“速率”和“速度”混用,但两者在物理学中对应着不同的概
- 遮罗迦本集遮罗迦本集(梵语:चरक संहिता,转写:caraka-saṃhitā)是一部以梵语撰写的阿育吠陀(印度传统医学)文献。它与《妙闻集(英语:Sushruta Samhita)》共同为古印度在此领域中流传下
- 左塞尔左塞尔(Zoser)是埃及第三王朝最为著名的法老。他曾令其手下的官员,伊姆荷太普修建了埃及历史上的第一座金字塔——位于萨卡拉地区的左塞尔金字塔——作为他的陵墓。他的名字的
- 隔膜膈膜可以指:
- 技术分析技术分析是指研究过去金融市场的资讯(主要是经由使用图表)来预测价格的趋势与决定投资的策略。纯理论上,技术分析只考虑市场或金融工具真实的价格行为,在假设其价格会反应所有在
- 霍尔杰弗里·康纳·霍尔(英语:Jeffrey Connor Hall,1945年5月3日-),出生于纽约布鲁克林,美国遗传学家。于1971年获得西雅图华盛顿大学遗传学博士学位,于1974年成为布兰戴斯大学教员。于2
- 澳洲茄碱澳洲茄碱是一种有毒的化学物质,是澳洲茄胺(英语:solasodine)的糖苷。澳洲茄碱会在出现在茄科植物中。澳洲茄边碱也是一种不成功的抗癌用药Coramsine(英语:Coramsine)中的成分之一,另
- 过滤作用肾功能(Renal function)是描述肾脏状态及其在肾生理作用的角色。肾小球滤过率(Glomerular filtration rate/GFR、肾丝球滤过率)描述了通过肾脏过滤流体之流速。肌酸酐清除率(Crea
- 莫内塔埃内斯托·泰奥多罗·莫内塔(意大利语:Ernesto Teodoro Moneta,1833年9月20日-1918年2月10日),意大利新闻记者、国际和平主义活动家,1907年获诺贝尔和平奖。
