首页 >
方差
✍ dations ◷ 2025-06-07 07:41:28 #方差
方差(英语:Variance),应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。这里把复杂说白了,就是将各个误差之平方(而非取绝对值,使之肯定为正数),相加之后再除以总数,透过这样的方式来算出各个数据分布、零散(相对中心点)的程度。继续延伸的话,方差的正平方根称为该随机变量的标准差(此为相对各个数据点间),方差除以期望值归一化的值叫分散指数,标准差除以期望值归一化的值叫变异系数。设X为服从分布F的随机变量,
如果E是随机变数X的期望值(平均数μ=E)
随机变量X或者分布F的方差为:这个定义涵盖了连续、离散、或两者都有的随机变量。方差亦可当作是随机变量与自己本身的协方差(或协方差):方差典型的标记有Var(X),
σ
X
2
{displaystyle scriptstyle sigma _{X}^{2}}
, 或是
σ
2
{displaystyle sigma ^{2}}
,其表示式可展开成为:上述的表示式可记为"平方的期望减掉期望的平方"。如果随机变量X是具有概率质量函数的离散概率分布x1 ↦ p1, ..., xn ↦ pn,则:此处
μ
{displaystyle mu }
是其期望值, i.e.当X为有N个相等概率值的平均分布:N个相等概率值的方差亦可以点对点间的方变量表示为:如果随机变量X是连续分布,并对应至概率密度函数f(x),则其方差为:此处
μ
{displaystyle mu }
是一期望值,且此处的积分为以X为范围的x定积分(definite integral)
如果一个连续分布不存在期望值,如柯西分布(Cauchy distribution),也就不会有方差(不予定义)。方差不会是负的,因为次方计算为正的或为零:一个常数随机变量的方差为零,且当一个资料集的方差为零时,其内所有项目皆为相同数值:方差不变于定位参数的变动。也就是说,如果一个常数被加至一个数列中的所有变量值,此数列的方差不会改变:如果所有数值被放大一个常数倍,方差会放大此常数的平方倍:两个随机变量合的方差为:此数Cov(., .)代表协方差。
对于
N
{displaystyle N}
个随机变量
{
X
1
,
…
,
X
N
}
{displaystyle {X_{1},dots ,X_{N}}}
的总和:在样本空间Ω上存在有限期望和方差的随机变量构成一个希尔伯特空间:
L2(Ω, dP),不过这里的内积和长度跟协方差,标准差还是不大一样。
所以,我们得把这个空间“除”常变量构成的子空间,也就是说把相差一个常数的
所有原来那个空间的随机变量做成一个等价类。这还是一个新的无穷维线性空间,
并且有一个从旧空间内积诱导出来的新内积,而这个内积就是协方差。如果X是一个向量其取值范围在实数空间Rn,并且其每个元素都是一个一维随机变量,我们就把X称为随机向量。随机向量的方差是一维随机变量方差的自然推广,其定义为E,其中μ = E(X),XT是X的转置。这个方差是一个非负定的方阵,通常称为协方差矩阵。如果X是一个复数随机变量的向量(向量中每个元素均为复数的随机变量),那么其方差定义则为E,其中X*是X的共轭转置向量或称为埃尔米特向量。根据这个定义,方差为实数。“方差”(variance)这个名词率先由罗纳德·费雪(英语:Ronald Fisher)在论文《The Correlation Between Relatives on the Supposition of Mendelian Inheritance》中提出。后来“半方差”(semi variance(英语:semivariance)),“亚方差”(hypo variance)“超方差”,(super variance)与“圆方差”(circular variance(英语:circular variance))等类似概念也被逐渐延伸出去。
相关
- 原虫传染原虫传染是指由以前归类于原生动物界的生物引起的寄生虫病。传统上统称为“原生动物”的物种彼此之间并不密切相关,只有表面上的相似性(如都是真核生物和单细胞生物,具有移动性
- 病原微生物病原体(希腊语:πάθος pathos “痛苦”、“热情” 与 -γενής -genēs “生产者”),在生物学中,从最古老和最广泛的意义上说,就是任何可以产生疾病的事物。病原体也可以称
- 胎毛毫毛或称胎毛是一种只有婴儿才有的体毛,它的功能与头发类似,但在婴孩八个月时就会逐渐消失,因为毫毛有此特性,故有家长把孩子带到订做毛笔的地方,把毫毛刮下制成毛笔,作为送给孩子
- 符码在符号学中,符码(code)是用于沟通意义的一套惯例。最常见的符码是口语语言,但此术语还可用来指任何叙事的形式:例如色彩的意象(红色代表危险)、游戏规则(国际象棋中军事的能指)。索绪
- 地质学原理地质学原理(英文:Principles of Geology)是英国地质学家查理斯·莱尔的名著。1830年至1833年间分成三卷先后出版,莱尔在书中阐述了均变论的观点,认为山川河流的形成都是长时间积
- 感受器感受器(英语:Sensory receptor)也译作感觉接受器,是机体感受刺激的装置。听觉系统/听觉
- 哈希什哈希什(英语:Hashish)或哈希 (英语:Hash)是大麻的树脂,以棒状、杆状或球状物的形式存在。它包含如四氢大麻酚和其他大麻素相同的活性成分,但比未筛分的大麻芽或叶的浓度要高。哈希什
- 风扇风扇,日本和韩国称为扇风机,现代风扇以电为能源,故又称电风扇,简称电扇,台语称为电风。风扇是一种通过驱动扇叶旋转,来达到使空气加速流通的机械,主要用于清凉解暑和空气流通。电风
- 心室纤维颤动心房扑动(Atrial Flutter),源自心房异位节律点,每分钟约发出激动波250~350个。其特征为P波外型相似且快速地出现,且呈锯齿状。因为这种激动波是源自于异位节律点,故称之为扑动波
- 动态随机存储器动态随机存取存储器(Dynamic Random Access Memory,DRAM)是一种半导体存储器,主要的作用原理是利用电容内存储电荷的多寡来代表一个二进制比特(bit)是1还是0。由于在现实中晶体管