方差

✍ dations ◷ 2025-10-19 17:02:12 #方差
方差(英语:Variance),应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。这里把复杂说白了,就是将各个误差之平方(而非取绝对值,使之肯定为正数),相加之后再除以总数,透过这样的方式来算出各个数据分布、零散(相对中心点)的程度。继续延伸的话,方差的正平方根称为该随机变量的标准差(此为相对各个数据点间),方差除以期望值归一化的值叫分散指数,标准差除以期望值归一化的值叫变异系数。设X为服从分布F的随机变量, 如果E是随机变数X的期望值(平均数μ=E) 随机变量X或者分布F的方差为:这个定义涵盖了连续、离散、或两者都有的随机变量。方差亦可当作是随机变量与自己本身的协方差(或协方差):方差典型的标记有Var(X),  σ X 2 {displaystyle scriptstyle sigma _{X}^{2}} , 或是 σ 2 {displaystyle sigma ^{2}} ,其表示式可展开成为:上述的表示式可记为"平方的期望减掉期望的平方"。如果随机变量X是具有概率质量函数的离散概率分布x1 ↦ p1, ..., xn ↦ pn,则:此处 μ {displaystyle mu } 是其期望值, i.e.当X为有N个相等概率值的平均分布:N个相等概率值的方差亦可以点对点间的方变量表示为:如果随机变量X是连续分布,并对应至概率密度函数f(x),则其方差为:此处 μ {displaystyle mu } 是一期望值,且此处的积分为以X为范围的x定积分(definite integral) 如果一个连续分布不存在期望值,如柯西分布(Cauchy distribution),也就不会有方差(不予定义)。方差不会是负的,因为次方计算为正的或为零:一个常数随机变量的方差为零,且当一个资料集的方差为零时,其内所有项目皆为相同数值:方差不变于定位参数的变动。也就是说,如果一个常数被加至一个数列中的所有变量值,此数列的方差不会改变:如果所有数值被放大一个常数倍,方差会放大此常数的平方倍:两个随机变量合的方差为:此数Cov(., .)代表协方差。 对于 N {displaystyle N} 个随机变量 { X 1 , … , X N } {displaystyle {X_{1},dots ,X_{N}}} 的总和:在样本空间Ω上存在有限期望和方差的随机变量构成一个希尔伯特空间: L2(Ω, dP),不过这里的内积和长度跟协方差,标准差还是不大一样。 所以,我们得把这个空间“除”常变量构成的子空间,也就是说把相差一个常数的 所有原来那个空间的随机变量做成一个等价类。这还是一个新的无穷维线性空间, 并且有一个从旧空间内积诱导出来的新内积,而这个内积就是协方差。如果X是一个向量其取值范围在实数空间Rn,并且其每个元素都是一个一维随机变量,我们就把X称为随机向量。随机向量的方差是一维随机变量方差的自然推广,其定义为E,其中μ = E(X),XT是X的转置。这个方差是一个非负定的方阵,通常称为协方差矩阵。如果X是一个复数随机变量的向量(向量中每个元素均为复数的随机变量),那么其方差定义则为E,其中X*是X的共轭转置向量或称为埃尔米特向量。根据这个定义,方差为实数。“方差”(variance)这个名词率先由罗纳德·费雪(英语:Ronald Fisher)在论文《The Correlation Between Relatives on the Supposition of Mendelian Inheritance》中提出。后来“半方差”(semi variance(英语:semivariance)),“亚方差”(hypo variance)“超方差”,(super variance)与“圆方差”(circular variance(英语:circular variance))等类似概念也被逐渐延伸出去。

相关

  • 乙型肝炎病毒乙型肝炎病毒(英语:Hepatitis B virus)简称乙肝病毒(HBV)。是一种DNA病毒,属于嗜肝DNA病毒科(hepadnavividae)。根据目前所知,HBV就只对人和猩猩有易感性,引发乙型病毒性肝炎疾病。完
  • 拟病毒拟病毒(Virusoid)也称为类病毒,它是一种环状单链RNA。它的侵染对象是植物病毒。被侵染的植物病毒被称为辅助病毒,拟病毒必须通过辅助病毒才能复制。单独的辅助病毒或拟病毒都不
  • 醉虾醉虾,是一种用虾制作的中国菜肴。这道菜不同地方做法不同,一般是把虾浸渍于酒中,一些地方是生吃,一些则是煮熟后食用。由于活的淡水虾可能有肺吸虫寄生,可能对食用者是一个严重的
  • 人工电子耳人工耳蜗,亦称为“人工电子耳”,是一种植入式听觉辅助设备,其功能是使重度失聪的病人(聋人)产生一定的声音知觉。与助听器等其它类型的听觉辅助设备不同,人工耳蜗的工作原理不是放
  • 异常行为异常行为(或功能障碍行为)是一种行为特征,归因于那些被认为是罕见或功能障碍的病症。由社会不接受的行为组成,行为在非典型或不寻常的情况下被认为是不正常的,并且导致个体活动受
  • 杰拉德·特·胡夫特杰拉德·特·胡夫特(荷兰语:Gerard 't Hooft ,1946年7月5日-),荷兰理论物理学家,乌得勒支大学教授,于1999年因为“阐明物理学中弱电相互作用的量子结构”与其指导教授马丁纽斯·韦尔
  • γ-亚麻酸Γ-亚麻酸,GLA(Gamma- Linolenic Acid)被称为γ次亚麻油酸,是一种多元不饱和脂肪酸,在结构上属于特殊的Omega-6系列之必需脂肪酸。人体自行制造GLA的效率极低,因此须从食物中摄取
  • 梅德福市梅德福(Medford)位于美国俄勒冈州南部,是杰克逊县的县治。该市最高点乐声安峰高1090米,是普雷斯科特公园的一部分。根据2000年美国人口普查,梅德福共有63,154人,其中白人占89.99%
  • 爱尔兰海爱尔兰海(英语:Irish Sea、爱尔兰语:Muir Éireann )位于英国不列颠岛和爱尔兰岛之间;它南端的圣乔治海峡处于爱尔兰和威尔士之间,北端的北海海峡处于爱尔兰和苏格兰之间,两者都与
  • 山奈酚山柰酚(Kaempferol)是一种天然黄酮类化合物,是存在于茶叶、西兰花、翠雀草、金缕梅、葡萄柚、抱子甘蓝、苹果等植物中植源性物质。山柰酚为黄色结晶体,熔点为276-278℃,微溶于