四角六片四角孔扭歪无限面体

✍ dations ◷ 2025-04-04 11:10:58 #多面体,正扭歪无限面体

在几何学中,四角六片四角孔扭歪无限面体(日语:四角六片四角孔ねじれ正多面体)是一种正扭歪无限面体,由考克斯特和皮特里于1926年时发现,并命名为多立方体(英语:Mucube)。其对偶多面体为六角四片四角孔扭歪无限面体。

四角六片四角孔扭歪无限面体是一种扭歪正多面体,可以看做是立方体的空间填充形式——立方体堆砌少去部分正方形面的结果。

四角六片四角孔扭歪无限面体由无限个正方形组成,每个顶点都是6个正方形的公共顶点,在顶点图中为一个扭歪六边形,此扭歪六边形可以视为正八面体的皮特里多边形(英语:Petrie_polygon),为下图中的黑线部分。

四角六片四角孔扭歪无限面体由无限个正方形组成,并且在中间形成正方形的孔洞,在施莱夫利符号中计为{4,6|4},第一个4表示其由正方形构成,6表示每个顶点都是6个正方形的公共顶点,第二个4表示几何体中间有正方形的孔洞。其对偶多面体为六角四片四角孔扭歪无限面体,施莱夫利符号中计为{6,4|4}。

四角六片四角孔扭歪无限面体是三种正扭歪无限面体之一,另外两种为:

四角六片四角孔扭歪无限面体在拓朴中相当于六阶正方形镶嵌(施莱夫利符号:{4,6})的商空间,将四角六片四角孔扭歪无限面体中的结构进行拓朴变形可以构成一个六阶正方形镶嵌。

有些扭歪无限面体也是由正方形组成的,例如四角六片五角孔扭歪无限面体。

在几何学中,四角六片五角孔扭歪无限面体(日语:四角六片五角孔ねじれ正多面体)是一种位于双曲紧凑空间的正扭歪无限面体。其在施莱夫利符号中计为{4,6|5},表示每个顶点都是6个正方形的公共顶点,并且具有正五边形的孔洞。

四角六片五角孔扭歪无限面体于1967年时由C. W. L. Garner发现,可看作是由截半五阶十二面体堆砌(Runcinated order-5 dodecahedral honeycomb)移除所有正五边形面来构造。

四角六片五角孔扭歪无限面体的对偶多面体为六角四片五角孔扭歪无限面体,与其相同顶点布局的堆砌体为过截角五阶十二面体堆砌(Bitruncated order-5 dodecahedral honeycomb)。

在几何学中,四角五片扭歪无限面体(日语:四角五片ねじれ正多面体)是指具有每个顶点都是五个正方形的公共顶点的扭歪多面体,有两种形式,其具有的空间群在考克斯特记号(英语:Coxeter notation)中分别计为 ] {\displaystyle \left\right]} ] {\displaystyle \left\right]}

扭歪多面体是指面与顶点并不存在同一个三维空间而无法确定体积的多面体,除了扭歪无限面体是退化的情况外,有限面的扭歪多面体仅能存在于四维或以上的空间。

在四维空间中,有部分由正方形组成的扭歪多面体,例如:四角六片三角孔扭歪正三十面体{4,6|3}

在几何学中,四角六片三角孔扭歪正三十面体(日语:四角六片三角孔ねじれ正三十面体)是一种位于四维空间的正扭歪多面体。其在施莱夫利符号中计为{4,6|3},表示每个顶点都是6个正方形的公共顶点,并且具有正三角形的孔洞。

四角六片三角孔扭歪正三十面体由30个面、60条边和20个顶点组成,可以看做是截半五胞体(英语:Runcinated 5-cell)去除所有正三角形面的结果,因此与截半五胞体(英语:Runcinated 5-cell)共用相同的顶点布局。

四角六片三角孔扭歪正三十面体的对偶多面体为六角四片三角孔扭歪正二十面体,由20个正六边形组成。

四角六片三角孔扭歪正三十面体由30个正方形组成,每个顶点都是6个正方形的公共顶点,在顶点图中可以用46来表示,并且可以视为六阶正方形镶嵌的商空间。

扭歪多面体不存在一个唯一的空间区域,就如同扭歪多边形(不共面多边形)无法找到一个唯一的多边形内部区域一样,因此四角六片三角孔扭歪正三十面体的体积不存在,但仍可以球表面积,其表面积为30个正方形面的面积,即32倍的边长平方。

四角六片三角孔扭歪正三十面体的结构为S5群,其对称群在考克斯特符号中可以用+]表示,且阶数为60,并且与截半五胞体(英语:Runcinated 5-cell)共用相同的顶点布局。

由正方形组成且每个顶点都是4个正方形的公共顶点的扭歪多面体是一个无穷集合,其孔洞可以是任意多边形,其可以从四维柱体柱(英语:Duoprism)构造。

相关

  • 西加鱼毒雪卡毒素(英语:Ciguatoxins,简称CTX),又名雪卡鱼毒素、西加鱼毒素,是一类引起西加鱼毒中毒的毒素,共有4种。食物中这类毒素无法被烹饪去除,因此最好不要吃珊瑚礁鱼类的头部、皮肤及
  • 桂花桂花(学名:Osmanthus fragrans),又名梫、月桂,分为木樨和金桂,常绿灌木或小乔木;叶子对生,多呈椭圆或长椭圆形,叶面光滑,革质,叶边缘有锯齿;秋季开花,花簇生于叶腋,花冠分裂至基乳有乳白、
  • 让·布尔甘让·布尔甘(法语:Jean Bourgain,1954年2月28日-2018年12月22日),生于奥斯滕德,比利时数学家。他在1994年获菲尔兹奖,表扬他研究巴拿赫空间、调和分析和遍历理论的成果。他曾于伊利诺
  • 冥界 (古埃及)冥界(音译“杜阿特”,英语:Duat,也作Tuat、Tuaut、Akert、Amenthes、Amenti或Neter-khertet)是埃及神话中的死后世界。它在象形文字中表示为“
  • 海马海马属(学名:Hippocampus)是属于海龙科的一类辐鳍鱼。它是一种小型海洋生物,身长5-15厘米。因头部弯曲与体近直角而得名。在希腊神话中,海马被视作为海神的坐骑。其种类并不多,大
  • Bryopsidophyceae羽藻目(学名:Bryopsidales)是绿藻门下的一个目,原为羽藻纲下唯一的目,现时改属石莼纲。羽藻目生物是一种多核生物,其叶状体呈丝状,其中包括原子核在内的许多细胞器都可以自由移动。
  • 钢琴师和她的情人《钢琴课》(英语:The Piano)是一部1993年的新西兰剧情片,由简·坎皮恩执导,霍利·亨特、哈维·凯特尔、安娜·派昆及山姆·尼尔等主演。电影以19世纪为背景,描述一名苏格兰哑女子
  • 巴塔哥尼亚巴塔哥尼亚(西班牙语:Patagonia)一般是指南美洲安第斯山脉以东,科罗拉多河以南(或以南纬40度为界)的地区;主要位在阿根廷境内,小部分则属于智利。该地区的地形主要是一千米上下的高
  • 公石石(拼音:dàn,注音:ㄉㄢˋ,音同“淡”)是中国和日本古代容积单位,一石=十斗,通常用来量米。中国古代官员是以米、麦等粮食当作薪俸的,故有郡守两千石之说。《汉书·律历志》记载,汉时
  • 诺福克轻轨诺福克轻轨(英语:Tide Light Rail,可直译为“海浪轻轨”),是在美国弗吉尼亚州诺福克地区由汉普顿锚地交通局运营的一个轻轨系统。该系统只有一条线路,11个车站,总长7.4英里(11.91千