模糊逻辑

✍ dations ◷ 2025-08-17 08:40:31 #模糊逻辑
模糊逻辑是处理部分真实概念的布尔逻辑扩展。经典逻辑坚持所有事物(陈述)都可以用二元项(0或1,黑或白,是或否)来表达,而模糊逻辑用真实度替代了布尔真值。这些陈述表示实际上接近于日常人们的问题和语意陈述,因为“真实”和结果在多数时候是部分(非二元)的和/或不精确的(不准确的,不清晰的,模糊的)。真实度经常混淆于概率。但是它们在概念上是不一样的;模糊真值表示在模糊定义的集合中的成员归属关系,而不是某事件或条件的可能度(likelihood)。要展示这种区别,考虑下列情节:Bob在有两个毗邻的房间的屋子中:厨房和餐厅。在很多情况下,Bob的状态是在事物“在厨房中”的集合内是完全明确的:他要么“在厨房中”要么“不在厨房中”。但Bob站在门口的时候怎么办呢?它可被认为是“部分的在厨房中”。量化这个部分陈述产生了一个模糊集合成员关系。比如,只有他的小脚趾在餐厅,我们可以说Bob是0.01“在厨房中”。只要Bob站在了门口,就没有事件(如抛硬币)能解决他完全的“在厨房中”或“不在厨房中”。模糊集合是基于集合的模糊定义而不是随机性。模糊逻辑允许在包含0和1的它们之间集合成员关系值,同于黑和白之间的灰色,在它的语言形式中,有不精确的概念如"稍微"、"相当"和"非常"。特别是,它允许在集合中的部分成员关系。它有关于模糊集合和可能性理论。它是1965年卢菲特·泽德教授在加州大学伯克利分校介入的。模糊逻辑尽管被广泛接受却是有争议的:它被某些控制工程师出于有效性和其他原因,和一些坚持概率论是不确定性的唯一严格描述的统计学家所拒绝。批评者认为它不是普通集合论的超集,因为成员函数是依据常规集合而定义的。模糊逻辑可以用于控制家用电器比如洗衣机(它感知装载量和清洁剂浓度并据此调整它们的洗涤周期)和空调。基本的应用可以特征化为连续变量的子范围(subranges),形状常常是三角形或梯形。例如,防锁刹车的温度测量可以有正确控制刹车所需要的定义特定温度范围的多个独立的成员关系函数(归属函数 / Membership function)。每个函数映射相同的温度到在0至1范围内的一个真值且为非凹函数(non-concave functions,否则可能在某部分温度越高却被归类为越冷)。接着这些真值可以用于确定应当怎样控制刹车。在这个图象中,冷、暖和热是映射温度范围的函数。在这个刻度上的一个点有三个"真值"—分别对应着三个真值函数。对于展示的特定的温度,这三个真值可以被解释为把温度描述为,"相当冷", "有些暖"和"不太热"。通常情况会采用梯形,但在作模糊回归分析时则会选用三角形的归属函数。模糊逻辑通常使用IF/THEN规则,或构造等价的东西比如模糊关联矩阵。规则通常表达为如下形式:例如,一个非常简单的使用风扇的温度调节器:注意没有"ELSE"。所有规则都被求值,因为温度在不同程度上可以同时是"冷"和"正常"。在模糊逻辑中存在着布尔逻辑的AND、OR和NOT 运算符,它们通常定义为最小、最大和求补;在以这种方式定义它们的时候,它们叫做Zadeh运算符,因为它们是在Zadeh最初论文中首次定义的。对于模糊变量x和y:还可以应用叫做hedges的更贴近自然语言其他的运算符。一般性的副词如"非常"或"有点"能使用数学公式修改集合的内涵。在应用中,编程语言ProLog由于有架设被演绎逻辑问讯的"规则"的数据库设施而很适合实现模糊逻辑。这种编程叫做逻辑编程。在模糊的情况下,没有像1.8米这样的高度,只有模糊值,比如下列赋值:对于结论,也不只是两个值,而是五个:在二值或"脆弱"的情况下,高度为1.79米的一个人可能被认为是矮。如果另一个人的高度是1.8米或2.25米,这些人才被当作是高。这个脆弱的例子故意的区别于模糊的例子。我们在前提中不能放置因为性别经常被认为是二值信息。所以不像身高这么复杂。

相关

  • 生物数学数理生物学(英语:mathematical and theoretical biology),又称数学生物学(英语:mathematical biology)或生物数学(英语:biomathematics)是一个跨学科的领域,其主要目标是利用数学的技巧
  • 受体受体(receptors),又称受器、接收器,是一个生物化学上的概念,指一类能传导细胞外信号,并在细胞内产生特定效应的分子。产生的效应可能仅在短时间内持续,比如改变细胞的代谢或者细胞
  • 补体系统补体系统(英语:complement system)由一系列的蛋白质组成,属先天免疫系统的一部分。补体系统透过一连串的酵素(酶)相互切割启动,最终在目标微生物上形成类似孔洞的膜攻击复合物(Memb
  • 羟基化羟基化(法语:Hydroxylation,也称羟化)是向分子引入羟基(-OH)的过程。常指用羟基取代碳上的氢原子(-H)的反应。产物是醇、酚等。生化中,催化羟化反应的酶称为羟化酶。←氨基酸二级结构→
  • 旅行者腹泻旅行者腹泻(traveler's diarrhea,簡稱TD)是一种肠胃道感染疾病。旅行者腹泻的定义是指在旅途之中,持续排出未成形粪便的状态。常常伴随着腹部痉挛性的疼痛、恶心、发烧、胀气。
  • 理性主义理性主义、欧洲理性主义(Rationalism)是建立在承认人的理性可以作为知识来源的理论基础上的一种哲学方法,高于并独立于感官感知。理性主义最早的发源地是在英国,一般认为是随着
  • 幻听幻听(英语:Auditory Hallucination),是一种幻觉,患者会认为他们听到声音,但声音并不是真的存在。在医学上,它被称为Paracusia(该词来自希腊语: παρακοή,意思是:听觉的不服从)。
  • 犁鼻器犁鼻器(vomeronasal organ (VNO)、Jacobson's organ、或称 茄考生氏器、犁鼻器)是一种辅助嗅觉感觉器官,在多种动物中均能找到。这器官是由菲德里·勒伊斯(Frederik Ruysch(英语:F
  • 元语言广义来说,元语言是指讨论或研究语言本身时所使用的语言或符号。在逻辑和语言学里,元语言是用来对其他语言(对象语言(英语:Object language))的句子形成另一个句子的语言。元语言通
  • 满-通古斯语族满-通古斯语族(又称通古斯语系或通古斯-满语族)是世界主要语系之一,其下又分满语支和通古斯语支。通古斯语支的语言有长元音,满语支的语言复元音多;辅音的组合一般不超过两个音素,