数学上,曲面上的曲线的systolic不等式,最初是查尔斯·娄威纳在1949年研究(未发表,见蒲保明1952年的论文末尾的注解。给定一个闭曲面,其systole记为sys,定义为曲面上不能缩成一点的环路的最短长度。一个度量的systolic面积,定义为比例area/sys2,systolic比SR是其倒数sys2/area。
1949年娄威纳证明了环面T2上的度量的不等式,即是其systolic比SR(T2) 有上界,Bavard(1986)获得了systolic比的最佳上界的闭曲面,Hebda和Burago(1980)证明了systolic比SR()有上界2。三年后米哈伊尔·格罗莫夫找到SR()的一个上界, 是一个常数乘以
一个“较小”的界(带一个较小的常数)由Buser和Sarnak给出。他们证明了算术双曲黎曼曲面的systole表现为一个常数乘以-1),所以SR()渐近表现为一个常数乘以。