用餐者困境

✍ dations ◷ 2025-09-06 18:18:42 #用餐者困境

在博弈论中,用餐者困境是一个多参与者的囚徒困境。设想的情景是有若干人出去吃饭,在点菜之前他们达成了一致:所有人平摊买单的钱。现在每个人要么点贵的菜肴,要么点便宜的菜肴。假设贵的菜肴比便宜的要好,但是如果一个人单独进食的话,不能保证为贵的菜肴多付的钱一定值得。每个人都这么推想:众人将会点便宜的菜肴,而由于点了更贵的菜肴而额外加的钱将被众人摊分,所以额外加的钱是很少的,而菜肴的味道却会有较大的改善,因而多花这点钱是划算的。每个人都这样推想,最后的结果是他们都花钱点了更贵的菜肴,而原本他们认为点便宜的菜肴要比点贵的对每个人都要好些。

g {\displaystyle g} 表示从享用贵的菜肴中得到效用, b {\displaystyle b} 表示从享用便宜的菜肴中得到的效用, h {\displaystyle h} 表示为贵的菜肴付的钱, l {\displaystyle l} 表示为便宜的菜肴付的钱, n {\displaystyle n} 表示用餐者的人数。从上面的描述中我们可以得出如下顺序: h > g > b > l {\displaystyle h>g>b>l} 。而且,为了使这个游戏更类似囚徒困境,我们假设,在给定其他人都会帮助买单的前提下,人都是更喜欢贵的菜肴的, g 1 n h > b 1 n l {\displaystyle g-{\frac {1}{n}}h>b-{\frac {1}{n}}l}

考虑由某个参与者的对抗决定的任意一组策略。令其他的参与者的菜肴的总成本等于 x {\displaystyle x} 。那么,点便宜的菜肴的成本是 1 n x + 1 n l {\displaystyle {\frac {1}{n}}x+{\frac {1}{n}}l} ,而点贵的菜肴的成本是 1 n x + 1 n h {\displaystyle {\frac {1}{n}}x+{\frac {1}{n}}h} 。所以,如果点贵的菜肴,每人的从中得到效用是 g 1 n x 1 n h {\displaystyle g-{\frac {1}{n}}x-{\frac {1}{n}}h} ,而如果是便宜的菜肴,则是 b 1 n x 1 n l {\displaystyle b-{\frac {1}{n}}x-{\frac {1}{n}}l} 。假设从贵的菜肴中得到的效用更高。记住,对抗者们的策略选择是任意的,并且形势是均衡的。这证明贵的菜肴是严格占优的,因而是唯一的纳什均衡。

如果每个人都点贵的菜肴,所有用餐者都支付 h {\displaystyle h} ,那么得到的总效用是 g h < 0 {\displaystyle g-h<0} 。换句话说,假设所有人都点便宜的菜肴,那么他们的总效用会是 b l > 0 {\displaystyle b-l>0} 。这就揭示了用餐者困境和囚徒困境的相似之处。像囚徒困境一样,每个人得境况都因唯一的均衡结果而变差,而如果他们都一致地选择另外一个策略的话,大家的境况都将变好。

Gneezy,Haruvy和Yafe于2004年在一个现场试验中检验了这些结论。

每组六个用餐者选择不同的菜单组合。果然正如所料,当大家一起平摊费用时,受实验者比每人单独付钱时消费了更多菜肴。当菜肴是免费时,消费量最高。最后,某些组的成员只需要支付相当于他们个人费用的六分之一。这些组的消费量和平摊费用的消费量没有差异。因消费量增加而增加个人的费用,在两种支付安排下都是一样的,但是平摊费用对组里的其他成员施加了负担,这意味着在做选择时,参与者并不会把其他人的负担考虑进去。这与大量在实验室进行的试验结果不同。在实验室环境中受实验者面对的是从实验设计来看相似的选择,但这些选择的背景要比实际情况抽象得多。实际结果与实验室的试验的差别极有可能源于实验室环境与真实场景的差异。

相关

  • γ-亚麻酸Γ-亚麻酸,GLA(Gamma- Linolenic Acid)被称为γ次亚麻油酸,是一种多元不饱和脂肪酸,在结构上属于特殊的Omega-6系列之必需脂肪酸。人体自行制造GLA的效率极低,因此须从食物中摄取
  • 早前期早前期是有丝分裂中植物细胞所特有的一段分期。动物细胞或真菌等真核生物无此阶段。植物在此期间透过致密微管形成早前期带(英语:preprophase band)将质膜一分为二并开始在核膜
  • 电影制作电影制作(filmmaking、或称电影制片)指的是制作电影的过程。电影的性质决定了制作期间所需工作团队的规模大小和类型。许多好莱坞冒险电影需要电脑运算的影像(CGI),必须由非常多
  • 方仙道方仙道或神仙家是在春秋、战国时期形成的一类专门从事方术、方技等道术的人,时称方士。包括天文、医学、神仙、占卜、相术、堪舆等技艺并宣传服食、祭祀可以长生成仙的人。据
  • 碎积云淡积云(学名:Cumulus fractus,缩写: Cu fra ),是积云的一种。淡积云的边缘破碎,形态不断变化,这些变化通常还非常迅速。
  • 夜叉夜叉(梵语:यक्ष,转写:Yakṣa;巴利语:यक्ख,转写:yakkha),又译为药叉,本义“以鬼为食的神”,佛教中属于鬼道,意译为“能啖鬼”、“捷疾鬼”、“勇健”、“轻捷”等。女性夜叉,称夜叉
  • 芽孢乳酸菌凝结芽孢杆菌(学名:Bacillus coagulans),又称芽孢乳酸菌(Lactobacillus sporogene),是一种可以产生乳酸的革兰氏阳性菌。此种细菌为杆菌,大小约为0.9*3-5微米,具有过氧化氢酶,营养型态
  • 金海心金海心(朝鲜语:김해심,1978年10月30日-),中国朝鲜族女歌手。她主要用汉语演唱,也会用朝鲜语唱歌。出生于吉林省音乐家庭,5岁即开始学习钢琴和长笛。大学毕业。由于著名音乐人三宝的
  • 州属马来西亚是一个由13个州和3个联邦直辖区组成的联邦国家。11个州属和两个联邦直辖区位于马来半岛,另外两个州属和一个联邦直辖区则位于婆罗洲岛。九个马来州属被一名世袭统治
  • 乐陵市乐陵市(“乐”当地方言音lào〔音烙〕)是中华人民共和国山东省下辖的县级市,由德州市代管,地处山东省北部,毗邻河北省。总面积为1172平方千米,2001年人口为64万。目前市委书记为樊