首页 >
大数定理
✍ dations ◷ 2025-09-18 17:42:42 #大数定理
在数学与统计学中,大数定律又称大数法则、大数律,是描述相当多次数重复实验的结果的定律。根据这个定律知道,样本数量越多,则其算术平均值就有越高的概率接近期望值。大数定律很重要,因为它“说明”了一些随机事件的均值的长期稳定性。人们发现,在重复试验中,随着试验次数的增加,事件发生的频率趋于一个稳定值;人们同时也发现,在对物理量的测量实践中,测定值的算术平均也具有稳定性。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一,亦即偶然之中包含着必然。切比雪夫不等式的一个特殊情况、辛钦定理和伯努利大数定律都概括了这一现象,都称为大数定律。例如,抛掷一颗均匀的6面的骰子,1,2,3,4,5,6应等概率出现,所以每次扔出骰子后,出现点数的期望值是1
+
2
+
3
+
4
+
5
+
6
6
=
3.5
{displaystyle {frac {1+2+3+4+5+6}{6}}=3.5}根据大数定理,如果多次抛掷骰子,随着抛掷次数的增加,平均值(样本平均值)应该接近3.5,根据大数定理,在多次伯努利实验中,实验概率最后收敛于理论推断的概率值,对于伯努利随机变量,理论推断的成功概率就是期望值,而若对n个相互独立的随机变量的平均值,频率越多则相对越精准。例如硬币投掷即伯努利实验,当投掷一枚均匀的硬币,理论上得出的正面向上的概率应是1/2。因此,根据大数定理,正面朝上的比例在相对“大”的数字下,“理应”接近为1/2,尤其是正面朝上的概率在n次实验(n接近无限大时)后应几近收敛到1/2。即使正面朝上(或背面朝上)的比例接近1/2,几乎很自然的正面与负面朝上的绝对差值(absolute difference差值范围)应该相应随着抛掷次数的增加而增加。换句话说,绝对差值的概率应该是会随着抛掷次数而接近于0。直观的来看,绝对差值的期望会增加,只是慢于抛掷次数增加的速度。大数定律主要有两种表现形式:弱大数定律和强大数定律。定律的两种形式都肯定无疑地表明,样本均值收敛于真值其中
X
1
{displaystyle X_{1}}
,
X
2
{displaystyle X_{2}}
, ... 是独立同分布、期望值
E
(
X
1
)
=
E
(
X
2
)
=
⋯
=
μ
{displaystyle operatorname {E} (X_{1})=operatorname {E} (X_{2})=,cdots ,=mu }
且皆勒贝格可积的随机变量构成的无穷序列。
X
j
{displaystyle X_{j}}
的勒贝格可积性意味着期望值
E
(
X
j
)
{displaystyle operatorname {E} (X_{j})}
存在且有限。方差
Var
(
X
1
)
=
Var
(
X
2
)
=
⋯
=
σ
2
<
∞
{displaystyle operatorname {Var} (X_{1})=operatorname {Var} (X_{2})=,cdots ,=sigma ^{2}<infty }
有限的假设是非必要的。很大或者无穷大的方差会使其收敛得缓慢一些,但大数定律仍然成立。通常采用这个假设来使证明更加简洁。强和弱之间的差别在所断言的收敛的方式。对于这些方式的解释,参见随机变量的收敛。弱大数定律也称为辛钦定理,陈述为:样本均值依概率收敛于期望值。也就是说对于任意正数 ε,强大数定律指出,样本均值以概率1收敛于期望值。即设
a
1
,
a
2
,
…
,
a
n
,
…
{displaystyle a_{1}, a_{2}, dots , a_{n}, dots }
为相互独立的随机变量,其数学期望为:
E
(
a
i
)
=
μ
(
i
=
1
,
2
,
…
)
{displaystyle operatorname {E} (a_{i})=mu quad (i=1, 2, dots )}
,方差为:
Var
(
a
i
)
=
σ
2
(
i
=
1
,
2
,
…
)
{displaystyle operatorname {Var} (a_{i})=sigma ^{2}quad (i=1, 2, dots )}则序列
a
¯
=
1
n
∑
i
=
1
n
a
i
{displaystyle {overline {a}}={frac {1}{n}}sum _{i=1}^{n}a_{i}}
依概率收敛于
μ
{displaystyle mu }
(即收敛于此数列的数学期望
E
(
a
i
)
{displaystyle E(a_{i})}
)。换言之,在定理条件下,当
n
{displaystyle n}
无限变大时,
n
{displaystyle n}
个随机变量的算术平均将变成一个常数。设在
n
{displaystyle n}
次独立重复伯努利试验中,
事件
X
{displaystyle X}
发生的次数为
n
x
{displaystyle n_{x}}
。
事件
X
{displaystyle X}
在每次试验中发生的总体概率为
p
{displaystyle p}
。
n
x
n
{displaystyle {frac {n_{x}}{n}}}
代表样本发生事件
X
{displaystyle X}
的频率。大数定律可用概率极限值定义:
则对任意正数
ε
>
0
{displaystyle varepsilon >0}
,下式成立:定理表明事件发生的频率依概率收敛于事件的总体概率。
定理以严格的数学形式表达了频率的稳定性。
就是说当
n
{displaystyle n}
很大时,事件发生的频率于总体概率有较大偏差的可能性很小。
相关
- 气管气管(trachea)是连接喉部与肺部的通道,腹侧由软骨环组成,背侧由平滑肌所组成,向上以声带为出口,向下分支称之为支气管(bronchus)。组成气管的软骨为透明软骨。Template:Lower respir
- CATC代码C(心血管系统)是解剖学治疗学及化学分类系统的一个分类,这是由世界卫生组织药物统计方法整合中心(The WHO Collaborating Centre for Drug Statistics Methodology)所制定
- 肺淋巴管平滑肌增生症淋巴管平滑肌增生(英文:Lymphangioleiomyomatosis,通称:LAM),或称淋巴管平滑肌瘤、肺淋巴管肌瘤,是一种罕见、进行性、系统性疾病,通常发展为囊肿导致的肺功能丧失。LAM主要影响女性
- 植皮植皮(Skin grafting)是一种专门移植皮肤的移植技术。通常用来治疗外伤、烧伤、感染或某些手术造成的伤口。植皮主要有两个目的,第一是能够减少治疗所需程序,第二是增进身体的外
- 保罗·埃利希保罗·埃尔利希(旧译欧立希,德语:Paul Ehrlich,1854年3月14日-1915年8月20日),德国细菌学家、免疫学家。较为著名的研究包括血液学、免疫学与化学治疗。埃利赫预测了自体免疫的存在
- 熵化学及热力学中所谓熵(英语:entropy),是一种测量在动力学方面不能做功的能量总数,也就是当总体的熵增加,其做功能力也下降,熵的量度正是能量退化的指标。熵亦被用于计算一个系统中
- 美丽人生《美丽人生》(意大利语:La vita è bella,意为“人生是美好的”),1997年电影,由导演罗伯托·贝尼尼自编自演,荣获奥斯卡最佳男主角、欧洲电影奖最佳影片及多个国际大奖。电影讲述意
- 全新世灭绝事件全新世灭绝事件是于现今的全新世所发生广泛及持续的灭绝或生物集群灭绝事件,被广泛视为第六次的大规模灭绝事件(前五次分别是奥陶纪-志留纪灭绝事件、泥盆纪后期灭绝事件、二
- 灞桥灞桥位于中国陕西省西安市东10公里的灞河上,是古代关中通向东方的重要交通设施。由于长安至关东三条要道在灞河至长安城之间并为一路,中间以灞桥连通,故地位十分重要。程大昌有
- 鸟类肝去氧核糖核酸病毒属禽肝病毒属(Avihepadnavirus)又译作鸟类肝去氧核糖核酸病毒属,是肝病毒科的一个属,主要感染对像是鸟类。代表种: