首页 >
大数定理
✍ dations ◷ 2025-11-26 01:26:22 #大数定理
在数学与统计学中,大数定律又称大数法则、大数律,是描述相当多次数重复实验的结果的定律。根据这个定律知道,样本数量越多,则其算术平均值就有越高的概率接近期望值。大数定律很重要,因为它“说明”了一些随机事件的均值的长期稳定性。人们发现,在重复试验中,随着试验次数的增加,事件发生的频率趋于一个稳定值;人们同时也发现,在对物理量的测量实践中,测定值的算术平均也具有稳定性。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一,亦即偶然之中包含着必然。切比雪夫不等式的一个特殊情况、辛钦定理和伯努利大数定律都概括了这一现象,都称为大数定律。例如,抛掷一颗均匀的6面的骰子,1,2,3,4,5,6应等概率出现,所以每次扔出骰子后,出现点数的期望值是1
+
2
+
3
+
4
+
5
+
6
6
=
3.5
{displaystyle {frac {1+2+3+4+5+6}{6}}=3.5}根据大数定理,如果多次抛掷骰子,随着抛掷次数的增加,平均值(样本平均值)应该接近3.5,根据大数定理,在多次伯努利实验中,实验概率最后收敛于理论推断的概率值,对于伯努利随机变量,理论推断的成功概率就是期望值,而若对n个相互独立的随机变量的平均值,频率越多则相对越精准。例如硬币投掷即伯努利实验,当投掷一枚均匀的硬币,理论上得出的正面向上的概率应是1/2。因此,根据大数定理,正面朝上的比例在相对“大”的数字下,“理应”接近为1/2,尤其是正面朝上的概率在n次实验(n接近无限大时)后应几近收敛到1/2。即使正面朝上(或背面朝上)的比例接近1/2,几乎很自然的正面与负面朝上的绝对差值(absolute difference差值范围)应该相应随着抛掷次数的增加而增加。换句话说,绝对差值的概率应该是会随着抛掷次数而接近于0。直观的来看,绝对差值的期望会增加,只是慢于抛掷次数增加的速度。大数定律主要有两种表现形式:弱大数定律和强大数定律。定律的两种形式都肯定无疑地表明,样本均值收敛于真值其中
X
1
{displaystyle X_{1}}
,
X
2
{displaystyle X_{2}}
, ... 是独立同分布、期望值
E
(
X
1
)
=
E
(
X
2
)
=
⋯
=
μ
{displaystyle operatorname {E} (X_{1})=operatorname {E} (X_{2})=,cdots ,=mu }
且皆勒贝格可积的随机变量构成的无穷序列。
X
j
{displaystyle X_{j}}
的勒贝格可积性意味着期望值
E
(
X
j
)
{displaystyle operatorname {E} (X_{j})}
存在且有限。方差
Var
(
X
1
)
=
Var
(
X
2
)
=
⋯
=
σ
2
<
∞
{displaystyle operatorname {Var} (X_{1})=operatorname {Var} (X_{2})=,cdots ,=sigma ^{2}<infty }
有限的假设是非必要的。很大或者无穷大的方差会使其收敛得缓慢一些,但大数定律仍然成立。通常采用这个假设来使证明更加简洁。强和弱之间的差别在所断言的收敛的方式。对于这些方式的解释,参见随机变量的收敛。弱大数定律也称为辛钦定理,陈述为:样本均值依概率收敛于期望值。也就是说对于任意正数 ε,强大数定律指出,样本均值以概率1收敛于期望值。即设
a
1
,
a
2
,
…
,
a
n
,
…
{displaystyle a_{1}, a_{2}, dots , a_{n}, dots }
为相互独立的随机变量,其数学期望为:
E
(
a
i
)
=
μ
(
i
=
1
,
2
,
…
)
{displaystyle operatorname {E} (a_{i})=mu quad (i=1, 2, dots )}
,方差为:
Var
(
a
i
)
=
σ
2
(
i
=
1
,
2
,
…
)
{displaystyle operatorname {Var} (a_{i})=sigma ^{2}quad (i=1, 2, dots )}则序列
a
¯
=
1
n
∑
i
=
1
n
a
i
{displaystyle {overline {a}}={frac {1}{n}}sum _{i=1}^{n}a_{i}}
依概率收敛于
μ
{displaystyle mu }
(即收敛于此数列的数学期望
E
(
a
i
)
{displaystyle E(a_{i})}
)。换言之,在定理条件下,当
n
{displaystyle n}
无限变大时,
n
{displaystyle n}
个随机变量的算术平均将变成一个常数。设在
n
{displaystyle n}
次独立重复伯努利试验中,
事件
X
{displaystyle X}
发生的次数为
n
x
{displaystyle n_{x}}
。
事件
X
{displaystyle X}
在每次试验中发生的总体概率为
p
{displaystyle p}
。
n
x
n
{displaystyle {frac {n_{x}}{n}}}
代表样本发生事件
X
{displaystyle X}
的频率。大数定律可用概率极限值定义:
则对任意正数
ε
>
0
{displaystyle varepsilon >0}
,下式成立:定理表明事件发生的频率依概率收敛于事件的总体概率。
定理以严格的数学形式表达了频率的稳定性。
就是说当
n
{displaystyle n}
很大时,事件发生的频率于总体概率有较大偏差的可能性很小。
相关
- 丧事丧事,是指对死者表示哀悼的相关仪式(如葬礼)、习俗、禁忌等,而亲人或一些对本身重要的人物去世后的一些特定习俗则称为读礼、守制、守丧、守孝、服丧、居丧等。最常见的是穿着丧
- 胶囊胶囊剂以可溶性明胶作为包覆材料的囊状药剂,可避免口服时,药物与味觉器官直接接触引发恶心反应。请阅读硬胶囊请阅读软胶囊
- The Age世纪报(英语:The Age),是费尔法克斯传媒时代有限公司在1854年澳大利亚墨尔本发行的每日新闻报纸。该报纸主要在维多利亚州发行,但也可以在塔斯马尼亚、澳大利亚首都直辖区、南澳
- 哈里·斯塔克·沙利文哈里·斯塔克·沙利文(英语:Harry Stack Sullivan,1892年2月21日出生于纽约州city of Norwich,1949年1月14日逝于法国巴黎),美国心理学家,其心理学研究工作是基于直接和可检验的观
- 阿拉伯人逊尼派伊斯兰教有三种方式可以判断一个人多大程度上是阿拉伯人。对于上述因素考虑的重要程度,不同的人有不同的看法。大多数认为自己是阿拉伯人的人们,是考虑到政治和语言的因
- 支架蛋白质在生物学中,“支架蛋白质”(英文:Scaffold protein)是许多关键信号通路的关键调节因子。尽管目前对支架的功能没有严格的定义,但已知它们会与信号传导途径的多个成员相互作用或结
- 乙苯乙苯(英语:Ethylbenzene,分子式:C6H5CH2CH3)是一个芳香族的有机化合物,主要用途是在石油化学工业作为生产苯乙烯的中间体,所制成的苯乙烯一般被用来制备常用的塑料制品——聚苯乙烯
- 烃类.mw-parser-output ruby>rt,.mw-parser-output ruby>rtc{font-feature-settings:"ruby"1}.mw-parser-output ruby.large{font-size:250%}.mw-parser-output ruby.larger{fon
- 枯草芽孢杆菌枯草杆菌(学名:Bacillus subtilis),是芽孢杆菌属的一种细菌,为革兰氏阳性的好气性菌,普遍存在于土壤及植物体表,在人体亦可发现在肠道内共生的枯草杆菌。型态上的主要特征是菌体表
- 加盟共和国加盟共和国可以指:
