大数定理

✍ dations ◷ 2025-08-29 13:12:02 #大数定理
在数学与统计学中,大数定律又称大数法则、大数律,是描述相当多次数重复实验的结果的定律。根据这个定律知道,样本数量越多,则其算术平均值就有越高的概率接近期望值。大数定律很重要,因为它“说明”了一些随机事件的均值的长期稳定性。人们发现,在重复试验中,随着试验次数的增加,事件发生的频率趋于一个稳定值;人们同时也发现,在对物理量的测量实践中,测定值的算术平均也具有稳定性。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一,亦即偶然之中包含着必然。切比雪夫不等式的一个特殊情况、辛钦定理和伯努利大数定律都概括了这一现象,都称为大数定律。例如,抛掷一颗均匀的6面的骰子,1,2,3,4,5,6应等概率出现,所以每次扔出骰子后,出现点数的期望值是1 + 2 + 3 + 4 + 5 + 6 6 = 3.5 {displaystyle {frac {1+2+3+4+5+6}{6}}=3.5}根据大数定理,如果多次抛掷骰子,随着抛掷次数的增加,平均值(样本平均值)应该接近3.5,根据大数定理,在多次伯努利实验中,实验概率最后收敛于理论推断的概率值,对于伯努利随机变量,理论推断的成功概率就是期望值,而若对n个相互独立的随机变量的平均值,频率越多则相对越精准。例如硬币投掷即伯努利实验,当投掷一枚均匀的硬币,理论上得出的正面向上的概率应是1/2。因此,根据大数定理,正面朝上的比例在相对“大”的数字下,“理应”接近为1/2,尤其是正面朝上的概率在n次实验(n接近无限大时)后应几近收敛到1/2。即使正面朝上(或背面朝上)的比例接近1/2,几乎很自然的正面与负面朝上的绝对差值(absolute difference差值范围)应该相应随着抛掷次数的增加而增加。换句话说,绝对差值的概率应该是会随着抛掷次数而接近于0。直观的来看,绝对差值的期望会增加,只是慢于抛掷次数增加的速度。大数定律主要有两种表现形式:弱大数定律和强大数定律。定律的两种形式都肯定无疑地表明,样本均值收敛于真值其中 X 1 {displaystyle X_{1}} , X 2 {displaystyle X_{2}} , ... 是独立同分布、期望值 E ⁡ ( X 1 ) = E ⁡ ( X 2 ) = ⋯ = μ {displaystyle operatorname {E} (X_{1})=operatorname {E} (X_{2})=,cdots ,=mu } 且皆勒贝格可积的随机变量构成的无穷序列。 X j {displaystyle X_{j}} 的勒贝格可积性意味着期望值 E ⁡ ( X j ) {displaystyle operatorname {E} (X_{j})} 存在且有限。方差 Var ⁡ ( X 1 ) = Var ⁡ ( X 2 ) = ⋯ = σ 2 < ∞ {displaystyle operatorname {Var} (X_{1})=operatorname {Var} (X_{2})=,cdots ,=sigma ^{2}<infty } 有限的假设是非必要的。很大或者无穷大的方差会使其收敛得缓慢一些,但大数定律仍然成立。通常采用这个假设来使证明更加简洁。强和弱之间的差别在所断言的收敛的方式。对于这些方式的解释,参见随机变量的收敛。弱大数定律也称为辛钦定理,陈述为:样本均值依概率收敛于期望值。也就是说对于任意正数 ε,强大数定律指出,样本均值以概率1收敛于期望值。即设 a 1 ,   a 2 ,   …   ,   a n ,   … {displaystyle a_{1}, a_{2}, dots , a_{n}, dots } 为相互独立的随机变量,其数学期望为: E ⁡ ( a i ) = μ ( i = 1 ,   2 ,   … ) {displaystyle operatorname {E} (a_{i})=mu quad (i=1, 2, dots )} ,方差为: Var ⁡ ( a i ) = σ 2 ( i = 1 ,   2 ,   … ) {displaystyle operatorname {Var} (a_{i})=sigma ^{2}quad (i=1, 2, dots )}则序列 a ¯ = 1 n ∑ i = 1 n a i {displaystyle {overline {a}}={frac {1}{n}}sum _{i=1}^{n}a_{i}} 依概率收敛于 μ {displaystyle mu } (即收敛于此数列的数学期望 E ( a i ) {displaystyle E(a_{i})} )。换言之,在定理条件下,当 n {displaystyle n} 无限变大时, n {displaystyle n} 个随机变量的算术平均将变成一个常数。设在 n {displaystyle n} 次独立重复伯努利试验中, 事件 X {displaystyle X} 发生的次数为 n x {displaystyle n_{x}} 。 事件 X {displaystyle X} 在每次试验中发生的总体概率为 p {displaystyle p} 。 n x n {displaystyle {frac {n_{x}}{n}}} 代表样本发生事件 X {displaystyle X} 的频率。大数定律可用概率极限值定义: 则对任意正数 ε > 0 {displaystyle varepsilon >0} ,下式成立:定理表明事件发生的频率依概率收敛于事件的总体概率。 定理以严格的数学形式表达了频率的稳定性。 就是说当 n {displaystyle n} 很大时,事件发生的频率于总体概率有较大偏差的可能性很小。

相关

  • 价值论价值论 (来自古希腊语 ἀξίᾱ, axiā, "价值"; 以及-λόγος, 理性) 价值观的哲学研究。价值论 同时可以用在伦理学以及美学上—亦即高度重视价值观念的哲学领域—或者
  • 加州加利福尼亚州(英语:State of California),简称加州,是美国西部太平洋沿岸的一个州。面积位列美国第三;人口为3,930万,位列美国各州第一。州首府是萨克拉门托。在地理、地貌、物产、
  • 受伤受伤或创伤,是生理创伤、损害,身体受外物力量侵害,身体功能丧失、流血、断裂、骨折等。在工作时的受伤,称为工伤;在运动时受伤,称为运动创伤,学科名为运动创伤学、运动医学,总称创伤
  • 男性色情男色(英语:Male porn)指男性色情,也可以指男子的美色、色相。男色在日本的意思主要为“以男性为性交对象”,着重于情色层面的意义,与“男男相恋”的意思有所区别。比起其他宗教制
  • 临床诊断学临床诊断学是研究诊断疾病的基本原则和方法的学科,是临床医学的基础与起步,得到正确的诊断才能导向正确的治疗,并有利于临床医学的研究。临床诊断学的内容包括:现在病史与过去病
  • 赫茲赫兹(符号:Hz)是频率的国际单位制单位,表示每一秒周期性事件发生的次数。赫兹是以首个用实验验证电磁波存在的科学家海因里希·赫兹命名,常用于描述正弦波、乐音、无线电通讯以及
  • 红土红土,指富含氧化铁,氧化铝,水氧化铁,水氧化铝,二氧化铁,二氧化铝的土,因富含氧化铁以致土壤发出棕色颜色,土质最好为黑土,最差为红土。 因长年下雨,导致腐植质储存不易,仅留下较重的氧
  • 产氧光合作用光合作用是植物、藻类等生产者和某些细菌,利用光能把二氧化碳、水或硫化氢变成碳水化合物的过程。可分为产氧光合作用和不产氧光合作用。植物之所以称为食物链的生产者,是因为
  • 境外领土美国领地是指美国行政区划的一种分类,其领土由美国政府管理但不属于美国任何一个州。建立这些领地的目的是为了管理这些新获得的地区,因为当时美国领土的边界还在扩张中。这些
  • 法国人第一排:圣女贞德 · 雅克·卡蒂埃 · 笛卡儿 · 莫里哀 · 帕斯卡路易十四 · 伏尔泰 · 德尼·狄德罗 · 拿破仑 第二排:维克多·雨果 · 大仲马 · 伽罗瓦 · 路易·巴士德