大数定理

✍ dations ◷ 2025-05-16 08:27:15 #大数定理
在数学与统计学中,大数定律又称大数法则、大数律,是描述相当多次数重复实验的结果的定律。根据这个定律知道,样本数量越多,则其算术平均值就有越高的概率接近期望值。大数定律很重要,因为它“说明”了一些随机事件的均值的长期稳定性。人们发现,在重复试验中,随着试验次数的增加,事件发生的频率趋于一个稳定值;人们同时也发现,在对物理量的测量实践中,测定值的算术平均也具有稳定性。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一,亦即偶然之中包含着必然。切比雪夫不等式的一个特殊情况、辛钦定理和伯努利大数定律都概括了这一现象,都称为大数定律。例如,抛掷一颗均匀的6面的骰子,1,2,3,4,5,6应等概率出现,所以每次扔出骰子后,出现点数的期望值是1 + 2 + 3 + 4 + 5 + 6 6 = 3.5 {displaystyle {frac {1+2+3+4+5+6}{6}}=3.5}根据大数定理,如果多次抛掷骰子,随着抛掷次数的增加,平均值(样本平均值)应该接近3.5,根据大数定理,在多次伯努利实验中,实验概率最后收敛于理论推断的概率值,对于伯努利随机变量,理论推断的成功概率就是期望值,而若对n个相互独立的随机变量的平均值,频率越多则相对越精准。例如硬币投掷即伯努利实验,当投掷一枚均匀的硬币,理论上得出的正面向上的概率应是1/2。因此,根据大数定理,正面朝上的比例在相对“大”的数字下,“理应”接近为1/2,尤其是正面朝上的概率在n次实验(n接近无限大时)后应几近收敛到1/2。即使正面朝上(或背面朝上)的比例接近1/2,几乎很自然的正面与负面朝上的绝对差值(absolute difference差值范围)应该相应随着抛掷次数的增加而增加。换句话说,绝对差值的概率应该是会随着抛掷次数而接近于0。直观的来看,绝对差值的期望会增加,只是慢于抛掷次数增加的速度。大数定律主要有两种表现形式:弱大数定律和强大数定律。定律的两种形式都肯定无疑地表明,样本均值收敛于真值其中 X 1 {displaystyle X_{1}} , X 2 {displaystyle X_{2}} , ... 是独立同分布、期望值 E ⁡ ( X 1 ) = E ⁡ ( X 2 ) = ⋯ = μ {displaystyle operatorname {E} (X_{1})=operatorname {E} (X_{2})=,cdots ,=mu } 且皆勒贝格可积的随机变量构成的无穷序列。 X j {displaystyle X_{j}} 的勒贝格可积性意味着期望值 E ⁡ ( X j ) {displaystyle operatorname {E} (X_{j})} 存在且有限。方差 Var ⁡ ( X 1 ) = Var ⁡ ( X 2 ) = ⋯ = σ 2 < ∞ {displaystyle operatorname {Var} (X_{1})=operatorname {Var} (X_{2})=,cdots ,=sigma ^{2}<infty } 有限的假设是非必要的。很大或者无穷大的方差会使其收敛得缓慢一些,但大数定律仍然成立。通常采用这个假设来使证明更加简洁。强和弱之间的差别在所断言的收敛的方式。对于这些方式的解释,参见随机变量的收敛。弱大数定律也称为辛钦定理,陈述为:样本均值依概率收敛于期望值。也就是说对于任意正数 ε,强大数定律指出,样本均值以概率1收敛于期望值。即设 a 1 ,   a 2 ,   …   ,   a n ,   … {displaystyle a_{1}, a_{2}, dots , a_{n}, dots } 为相互独立的随机变量,其数学期望为: E ⁡ ( a i ) = μ ( i = 1 ,   2 ,   … ) {displaystyle operatorname {E} (a_{i})=mu quad (i=1, 2, dots )} ,方差为: Var ⁡ ( a i ) = σ 2 ( i = 1 ,   2 ,   … ) {displaystyle operatorname {Var} (a_{i})=sigma ^{2}quad (i=1, 2, dots )}则序列 a ¯ = 1 n ∑ i = 1 n a i {displaystyle {overline {a}}={frac {1}{n}}sum _{i=1}^{n}a_{i}} 依概率收敛于 μ {displaystyle mu } (即收敛于此数列的数学期望 E ( a i ) {displaystyle E(a_{i})} )。换言之,在定理条件下,当 n {displaystyle n} 无限变大时, n {displaystyle n} 个随机变量的算术平均将变成一个常数。设在 n {displaystyle n} 次独立重复伯努利试验中, 事件 X {displaystyle X} 发生的次数为 n x {displaystyle n_{x}} 。 事件 X {displaystyle X} 在每次试验中发生的总体概率为 p {displaystyle p} 。 n x n {displaystyle {frac {n_{x}}{n}}} 代表样本发生事件 X {displaystyle X} 的频率。大数定律可用概率极限值定义: 则对任意正数 ε > 0 {displaystyle varepsilon >0} ,下式成立:定理表明事件发生的频率依概率收敛于事件的总体概率。 定理以严格的数学形式表达了频率的稳定性。 就是说当 n {displaystyle n} 很大时,事件发生的频率于总体概率有较大偏差的可能性很小。

相关

  • 甲氧西林甲氧西林(Methicillin)是一种于1960年首次合成的β-内酰胺类半合成抗生素。发现于1960年,主要对金黄色葡萄球菌等革兰氏阳性菌有作用,可用于治疗败血症、呼吸道感染、脑膜炎等由
  • 窃盗癖窃盗癖是一种心理疾病,是一种冲动控制障碍(Impulse control disorder),患者会有冲动去偷窃商店或私人住宅的东西,但偷来的东西既不是留用,也不是变卖现金,只是为了满足偷窃时的冲动
  • 丙氨酸丙氨酸(Alanine,简写为Ala或A)是一种氨基酸,于1879年首度被分离出来。它含有胺基和羧酸,二者都与中心碳原子相连,中心碳原子也带有甲基侧链。因此,它的IUPAC系统命名为2-氨基丙酸,并
  • 脊神经脊神经(spinal nerve)在脊髓和身体之间传递信号。信号混合有运动神经,感觉神经和自主神经的信号。在人体中有31对脊神经(spinal nerves),每一对脊神经在脊柱的双侧。分在脊柱的
  • 脊椎侧弯脊椎侧弯(scoliosis)是指人的脊椎有侧向的弯曲,其形状可能是S形或是C形。有些人的脊椎侧弯情形稳定不会变化,有些则会随时间日渐加增。轻微的脊椎侧弯不会有其他症状,而严重的脊
  • 共同祖先共同起源(英语:Common descent)是指一群生物体拥有最近共同祖先的情况。所有地球上的生命都源于最后共同祖先或最后共同祖先基因池。在演化生物学中,一群生物的某个共有的性状如
  • 基因流在群体遗传学中, 基因流动,或称为基因移徙(英语:gene flow),是变异基因从一个种群到另一个种群的转移。 如果基因流动的速率足够高,那么两个种群可以看作是拥有一致的基因多样性,因
  • CNa有机钠化学是研究含有碳-钠键的金属有机化合物(即有机钠化合物)化学的学科。 有机钠化合物的应用因为与有机锂化合物(同样位于元素周期表IA族)竞争而收到部分限制。尽管如此仍存
  • 胡椒粉胡椒粉(又名古月粉)是胡椒的果实成熟晒干后磨碎制成的,用于烹饪的调味料,味道辛辣。通常分为黑胡椒粉和白胡椒粉。
  • 阿富汗临时政府阿富汗伊斯兰国,是苏联入侵阿富汗战争结束、原政权垮台后,在1992年所成立的新政权,由阿富汗伊斯兰联合拯救阵线执政。1996年,塔利班攻陷喀布尔,改为伊斯兰酋长国,伊斯兰联合拯救阵