大数定理

✍ dations ◷ 2025-03-07 10:43:50 #大数定理
在数学与统计学中,大数定律又称大数法则、大数律,是描述相当多次数重复实验的结果的定律。根据这个定律知道,样本数量越多,则其算术平均值就有越高的概率接近期望值。大数定律很重要,因为它“说明”了一些随机事件的均值的长期稳定性。人们发现,在重复试验中,随着试验次数的增加,事件发生的频率趋于一个稳定值;人们同时也发现,在对物理量的测量实践中,测定值的算术平均也具有稳定性。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一,亦即偶然之中包含着必然。切比雪夫不等式的一个特殊情况、辛钦定理和伯努利大数定律都概括了这一现象,都称为大数定律。例如,抛掷一颗均匀的6面的骰子,1,2,3,4,5,6应等概率出现,所以每次扔出骰子后,出现点数的期望值是1 + 2 + 3 + 4 + 5 + 6 6 = 3.5 {displaystyle {frac {1+2+3+4+5+6}{6}}=3.5}根据大数定理,如果多次抛掷骰子,随着抛掷次数的增加,平均值(样本平均值)应该接近3.5,根据大数定理,在多次伯努利实验中,实验概率最后收敛于理论推断的概率值,对于伯努利随机变量,理论推断的成功概率就是期望值,而若对n个相互独立的随机变量的平均值,频率越多则相对越精准。例如硬币投掷即伯努利实验,当投掷一枚均匀的硬币,理论上得出的正面向上的概率应是1/2。因此,根据大数定理,正面朝上的比例在相对“大”的数字下,“理应”接近为1/2,尤其是正面朝上的概率在n次实验(n接近无限大时)后应几近收敛到1/2。即使正面朝上(或背面朝上)的比例接近1/2,几乎很自然的正面与负面朝上的绝对差值(absolute difference差值范围)应该相应随着抛掷次数的增加而增加。换句话说,绝对差值的概率应该是会随着抛掷次数而接近于0。直观的来看,绝对差值的期望会增加,只是慢于抛掷次数增加的速度。大数定律主要有两种表现形式:弱大数定律和强大数定律。定律的两种形式都肯定无疑地表明,样本均值收敛于真值其中 X 1 {displaystyle X_{1}} , X 2 {displaystyle X_{2}} , ... 是独立同分布、期望值 E ⁡ ( X 1 ) = E ⁡ ( X 2 ) = ⋯ = μ {displaystyle operatorname {E} (X_{1})=operatorname {E} (X_{2})=,cdots ,=mu } 且皆勒贝格可积的随机变量构成的无穷序列。 X j {displaystyle X_{j}} 的勒贝格可积性意味着期望值 E ⁡ ( X j ) {displaystyle operatorname {E} (X_{j})} 存在且有限。方差 Var ⁡ ( X 1 ) = Var ⁡ ( X 2 ) = ⋯ = σ 2 < ∞ {displaystyle operatorname {Var} (X_{1})=operatorname {Var} (X_{2})=,cdots ,=sigma ^{2}<infty } 有限的假设是非必要的。很大或者无穷大的方差会使其收敛得缓慢一些,但大数定律仍然成立。通常采用这个假设来使证明更加简洁。强和弱之间的差别在所断言的收敛的方式。对于这些方式的解释,参见随机变量的收敛。弱大数定律也称为辛钦定理,陈述为:样本均值依概率收敛于期望值。也就是说对于任意正数 ε,强大数定律指出,样本均值以概率1收敛于期望值。即设 a 1 ,   a 2 ,   …   ,   a n ,   … {displaystyle a_{1}, a_{2}, dots , a_{n}, dots } 为相互独立的随机变量,其数学期望为: E ⁡ ( a i ) = μ ( i = 1 ,   2 ,   … ) {displaystyle operatorname {E} (a_{i})=mu quad (i=1, 2, dots )} ,方差为: Var ⁡ ( a i ) = σ 2 ( i = 1 ,   2 ,   … ) {displaystyle operatorname {Var} (a_{i})=sigma ^{2}quad (i=1, 2, dots )}则序列 a ¯ = 1 n ∑ i = 1 n a i {displaystyle {overline {a}}={frac {1}{n}}sum _{i=1}^{n}a_{i}} 依概率收敛于 μ {displaystyle mu } (即收敛于此数列的数学期望 E ( a i ) {displaystyle E(a_{i})} )。换言之,在定理条件下,当 n {displaystyle n} 无限变大时, n {displaystyle n} 个随机变量的算术平均将变成一个常数。设在 n {displaystyle n} 次独立重复伯努利试验中, 事件 X {displaystyle X} 发生的次数为 n x {displaystyle n_{x}} 。 事件 X {displaystyle X} 在每次试验中发生的总体概率为 p {displaystyle p} 。 n x n {displaystyle {frac {n_{x}}{n}}} 代表样本发生事件 X {displaystyle X} 的频率。大数定律可用概率极限值定义: 则对任意正数 ε > 0 {displaystyle varepsilon >0} ,下式成立:定理表明事件发生的频率依概率收敛于事件的总体概率。 定理以严格的数学形式表达了频率的稳定性。 就是说当 n {displaystyle n} 很大时,事件发生的频率于总体概率有较大偏差的可能性很小。

相关

  • 丧恸丧恸(拼音:sāng tòng;英语:Grief),是对丧亡或死别的多重反应,会表现出悲伤、悲哀和伤心。这些反应除了在感情上外,也包括生理、认知、行为、社交及精神的层面。所经验的很多时都与
  • 饮食美国的饮食文化反映出它的历史。来自欧洲的殖民者引进了一批食材和烹饪风格,时间进入19世纪和20世纪以后,由于众多外国移民的涌入,使得全美国各地展现出丰富的食物与多样性。因
  • 圣荷西圣何塞(西班牙语:San José)是圣约瑟(Saint Joseph)的西班牙文。根据美国国家地理资讯情报局的统计,圣何塞是世界上最常见的地理名称:
  • 链球菌咽炎链球菌性咽炎(streptococcal pharyngitis、strep throat)是一种喉部后方含扁桃腺感染化脓链球菌(英语:Streptococcus pyogenes)的疾病,是咽炎中的一种,常见症状有发热、喉咙痛、扁
  • 特伦托自治省特伦托自治省(Provincia autonoma di Trento)是意大利特伦蒂诺-上阿迪杰的一个省。面积6,207平方公里,2005年人口504,824人。首府特伦托。下分223市镇。
  • 直系同源在生物学种系发生理论中,若两个或多个结构具有相同的祖先,则称它们同源(Homology)。这里相同的祖先既可以指演化意义上的祖先,即两个结构由一个共同的祖先演化而来(在这个意义上,蝙
  • 抗生素耐药性抗生素抗药性(antibiotic resistance)是抗药性的一种形式,借此特性,一些微生物亚群体,通常是细菌种,能够在暴露于一或多种抗生素之下得以生存;对多种抗生素具抗药性的病原体被视为
  • 龚古尔文学奖龚古尔文学奖或龚古尔奖(Prix Goncourt)是法国最重要的文学奖,每年11月颁奖。由19世纪法国作家爱德蒙·德·龚古尔(1822年—1896年)为他早逝的弟弟儒勒·德·龚古尔(1830年—1870
  • 卢瓦尔河地区卢瓦尔河地区(法语:Pays-de-la-Loire)是法国西部一个大区的名称,西邻大西洋,处于卢瓦尔河下游和及河口地区,法国大革命时期曾是保皇派叛乱的重要区域。它是1950年代创建的大区之一
  • Campylobacter见内文弯曲菌属(学名:Campylobacter),又名曲状杆菌属或弯曲杆菌属,是一种革兰氏阴性细菌的属。曲状杆菌属的型态就是折曲了的一般杆菌,呈“逗号”状或S字型。本属绝大多数物种均为