首页 >
Folding@Home
✍ dations ◷ 2025-09-05 00:08:17 #Folding@Home
Folding@home(简称FAH或F@h)是一个研究蛋白质折叠、误折、聚合及由此引起的相关疾病的分布式计算工程。由斯坦福大学化学系的潘德实验室(Pande Lab)主持,于2000年10月1日正式引导。Folding@home现时是世界上最大的分布式计算计划,于2007年为吉尼斯世界纪录所承认。2004年3月8日,研究基因结构的Genome@home(英语:Genome@home)计划终止,并入Folding@home。Folding@home专注于精确地模拟蛋白质折叠和错误折叠的过程,以便能更好地了解多种疾病的起因和发展,包括阿兹海默症、亨廷顿舞蹈症、牛海绵状脑病(疯牛病、疯牛病)、癌症和囊胞性纤维症。到当前为止,Folding@home 已成功模拟5—10微秒的折叠过程,超出先前估计可模拟的时段数千倍。很多研究蛋白质结构的论文,都有引用这个计划的成果。伊利诺伊大学香槟分校在2002年10月22日发表的报告证实,该计划采用分散模拟方式,所得出的结果是准确的。亨丁顿舞蹈症起因于第4对染色体异常,病发时会无法控制四肢,就像手舞足蹈一样,并伴随着智能减退,最后因吞咽、呼吸困难等原因而死亡。成骨不全症,又称脆骨症,是一种先天性遗传疾病,男女性患病的比例大约相同。这种疾病会造成第一型胶原纤维缺陷,使骨骼忍受外力冲击的能力较正常人差,即使是轻微的碰撞,也会造成严重的骨折,因此这类的病患被称为“玻璃娃娃”或“玻璃骨”。彭德实验室正利用Folding@home对一些病毒进行研究,对象包括流行性感冒病毒、人类免疫缺陷病毒(HIV)等,以查找阻止病毒进入细胞的方法。历史上全球曾多次出现高死亡率的周期性流感疫潮,其中1918年的西班牙流感导致全球近一亿人死亡。当病毒感染细胞时,会发生“脂质双层融合”(Lipid bilayer fusion/membrane fusion),其蛋白质会与细胞的蛋白质进行对接,过程之后或能进入细胞,或自我裹在细胞膜内。2020年2月27日,Folding@home发布新的计算程序以研究2019-nCoV病毒。Folding@home和另一个分布式计算计划Rosetta@home都做和蛋白质相关的研究,导致公众常常把两者的目标混淆,或不知道应该参加哪个计划。为此,Folding@home的管理者、潘德实验室的领导人费积·潘德(英语:Vijay S. Pande)教授解说道:Folding@home并不依靠强大的超级电脑进行计算,反而主要的贡献者是成千上万的个人电脑。每部参与的电脑都安装了一个在后台运行的客户端程序,在系统不忙碌的时候调用中央处理器运行模拟工作。现时世界上绝大部分的个人电脑,在一般的情况下都很少用尽本身的计算能力。Folding@home就是使用这些本来都浪费了的运算力量。Folding@Home的客户端会定时连接设于斯坦福大学的服务器去获取“工作单元”(work units),即一种存有实验数据的数据包,根据实验数据进行计算。每个工作单元计算完成后,再传回服务器。Folding@home的客户端利用了经修改的TINKER(英语:TINKER)、GROMACS、AMBER及CPMD(英语:CPMD)这四款分子模拟程序进行运算,并会在许可的情况下作出优化,以把运算速度加快。这四款模拟程序也被修改成多个不同版本,供多款作业平台使用,每款程序的变体会以编号“Core xx”作分类。Folding@home Console version是Folding@home的命令行接口版本,由史丹佛大学化学系的潘德实验室主持,于2000年10月1日正式引导,可精确地模拟蛋白质折叠和错误折叠的过程,以便能更好地了解多种疾病的起因和发展,Folding@home当前是世界上最大的分布式计算计划。要快速运算蛋白质的折叠效应,得需以高浮点运算能力的处理器进行,GPU具备强大浮点运算性能的优势,Folding@home方面也着手开发供GPU使用的程序,把作业交给GPU运算。2006年10月2日,Folding@home公开发行供Windows系统使用的GPU测试版本,测试期间收到由450颗ATI X1900 GPU提供的31 TFLOPS运算性能,每颗显核平均运算运力为一颗传统CPU的70多倍。至2008年4月10日,第二代Windows GPU公开测试版推出,新版本支持ATI/AMD HD2xxx及HD3xxx系列,不用再透过DirectX接口与显示核心沟通,并支持多GPU核心。供NVIDIA GPU使用的版本则利用CUDA技术,就可以使到GPU可以进行蛋白质折叠运算。NVIDIA官方表示,只需全球0.1%支持CUDA的显卡进行运算,性能就可以达到7PFLOPS,远超过超级电脑的计算水平。现时已推出供激活CUDA的NVIDIA GPU使用的公开测试版本。索尼已加入Folding@home计划,从PS3的1.6版本固件开始,支持该项目科学运算。由于PS3使用了Cell处理器,能提供强大的运算性能。当PS3闲置时,就会引导运算程序,计算蛋白质的折叠效应,利用结果去研究各种疑难杂症。当CELL处理器运算时,NVIDIA的RSX显核就会提供立体的蛋白质折叠实时图形展示。该图形展示效果不错,支持1080p输出,还有HDR效果。用家可利用手柄来控制观赏角度。PS3曾经为Folding@home提供最多的运算能力,随着供NVIDIA GPU使用的软件推出,NVIDIA GPU取代了PS3,成为了Folding@home的主力。截至2008年9月初,参与的PS3游戏机为该计划提供1,200多TFLOPS的运算能力,占总数近35%。随着更多不同款式的多核处理器陆续推出,支持多核心的软件也越来越多,Folding@home也加入支持对称多处理机(SMP),希望借此增强软件的运算能力。透过利用MPI,软件可同时使用多个内核进行运算。支持SMP的Folding@home于2006年11月13日推出供x86-64 Linux及x86 Mac OS X运行的beta测试版本,现时也已推出供Win32使用的试版本,而供32位Linux运行的版本则仍在开发中。一台PlayStation 3游戏机的标称功率为380W,由于Folding@Home是设计供CPU使用,因此会造成主机功耗达100%。但根据斯坦福方面有关PS3主机的常见问题,指出每台主机“在运行该程序时,其估计功率约为200W左右”。截至2008年5月底,共有51,000多台PS3主机为该计划提供1,400多TFlops的运算能力,每台PS3平均提供近30,000MFlops,以史丹福的每台主机200W输出(使用90nm制程的处理器)估计,每瓦输出提供150多MFlops。随着PS3的Cell处理器改用更微细的65nm及45nm制程,处理器的功耗会进一步下降,其每瓦输出提供的运算的能力也会提高。取决于PC本身CPU最大能耗以及计算程序设置。
相关
- 抗体酶抗体酶(Abzyme)也称催化性抗体,是具有催化活性的单克隆抗体。它是抗体的高度特异性与酶的高效催化性的结合产物,其实质是一类在可变区赋予了酶活性的免疫球蛋白。抗体酶的历史可
- 肥胖肥胖症(Obesity)是指体脂肪累积过多而对健康造成负面影响的身体状态,可能导致寿命减短及各种健康问题:9。肥胖的标准常使用身体质量指数(BMI)来衡量,即以体重(公斤)除以身高(米)的平方
- 效能效能(英语:efficacy),又称为内在活性(英语:Intrinsic activity,缩写IA)在药理学中指药物在受体上能产生的最大反应。这和药物与受体的结合亲和性不同,也和测量效价强度的EC50不同。19
- PHWR重水反应堆简称“重水堆”或“HWR”(Heavy Water Reactors),是一类利用重水作为中子慢化剂的核反应堆。最常见的重水反应堆是CANDU反应堆。重水反应堆中利用的慢化剂——重水是
- 《格雷氏解剖学》《亨利·格雷氏人体解剖学》(英语:Henry Gray's Anatomy of the Human Body),通常简短地写成《格雷氏解剖学》(Gray's Anatomy),是一部英语人体解剖学教科书,解剖学的经典著作之一。
- ACLS高级生命支持,亦为高级心肺复苏、ACLS,是指一系列的临床介入(clinical intervention),作为以下情况的应急处置:心跳停止、休克,以及其他医学上危及生命的紧急情况;亦指施行此临床
- 濒危濒危物种(英语:endangered species,简称EN)是指很可能会绝灭的物种。国际自然保护联盟(IUCN)的濒危物种红色名录就列出了许多濒危物种,这些是在国际自然保护联盟架构下,野生物种中第
- 热微菌热微菌门(Thermomicrobia)是一类绿非硫细菌。正如名字所说,是一类嗜热菌。一些学者认为热微菌不构成单独的一个门,而应该并入另一类绿非硫细菌——绿弯菌门(Chloroflexi)。
- 自燃温度自燃(英语:Spontaneous combustion 或 pyrophoric)是指可燃物质在没有外部火花、火焰等火源的作用下,因受热或自身发热并蓄热所产生的自行燃烧。蓄积的热量达到某个温度时,干草、
- 卡尔·杰拉西卡尔·杰拉西(德语:Carl Djerassi,1923年10月29日-2015年1月30日),中文又译翟若适,出生于奥地利维也纳,是保加利亚与奥地利裔美国化学家、小说家、剧作家。他最出名的贡献是开发口服