叠加原理

✍ dations ◷ 2025-04-04 11:09:55 #叠加原理
在物理学与系统理论中,叠加原理(superposition principle),也叫叠加性质(superposition property),说对任何线性系统“在给定地点与时间,由两个或多个刺激产生的合成反应是由每个刺激单独产生的反应之代数和。”从而如果输入 A 产生反应 X,输入 B 产生 Y,则输入 A+B 产生反应 (X+Y)。用数学的话讲,对所有线性系统 F(x)=y,其中 x 是某种程度上的刺激(输入)而 y 是某种反应(输出),刺激的叠加(即“和”)得出分别反应的叠加:在数学中,这个性质更常被叫做可加性。在绝大多数实际情形中,F 的可加性表明它是一个线性映射,也叫做一个线性函数或线性算子。此原理在物理学与工程学中有许多应用,因许多物理系统可以线性系统为模型。例如,一个梁可作为一个线性系统,其中输入刺激是在梁上的结构荷重,而输出反应是梁的挠度。因为物理系统通常只是近似线性的,叠加原理往往只是真实物理现象的近似;从这里可以察知这些系统的操作区域。叠加原理适用于任何线性系统,包括代数方程、线性微分方程、以及这些形式的方程组。输入与反应可以是数、函数、矢量、矢量场、随时间变化的信号、或任何满足一定公理的其它对象。注意当涉及到矢量与矢量场时,叠加理解为矢量和。通过将线性系统中一个非常一般的刺激写成一些特定的简单形式的刺激之叠加,利用叠加原理,通常使反应变得容易计算。例如,在傅里叶分析中,刺激写成无穷多个正弦波的叠加。由于叠加原理,每个这样的正弦波可单独分析,各自的反应可计算出来。(反应自己也是一个正弦波,与刺激的频率相同,但一般有不同的振幅与相位。)根据叠加原理,原来的刺激的反应是所有单独的正弦波反应之总和(或积分)。另一个常见的例子,在格林函数分析中,刺激写成无穷多个脉冲函数的叠加,而反应是脉冲响应的叠加。傅里叶分析对波是常用的。例如,在电磁理论中,通常的光描述为平面波(固定频率、极化与方向的波)的叠加。只要叠加原理成立(通常成立但未必一定;见非线性光学),任何光波的行为可理解为这些简单平面波的行为之叠加。波通常描述为通过空间与时间的某个参数的变化,例如,水波中的高度,声波中的压强,或光波中的电磁场。这个参数的值称为波的振幅,而波本身是确定在每一点的振幅的一个函数。在任何有波的系统中,在给定时间的波形式是该系统的源(即可能存在的产生或影响波的外力)与初始条件的函数。在许多情形(例如经典波方程),描述波的方程是线性的。如果该条件成立,则可以使用叠加原理。这就意味着由在同一空间中传播的两个或多个波的合成振幅,是由每个波单独产生的振幅之和。例如,两个相向传播的波将径直互相穿过,在另一边不会有任何变形(见最上面的图)。波之间的干涉即基于此想法。当两个或更多波在同一个空间中传播,在每一点的合成振幅是各个波的振幅之和。在某些情形,比如抗噪耳机,合成变量的振幅比各个分变量都小;这称为消极干涉。在另一种情形,比如线阵音箱(英语:Line array),合成变量振幅比各个分变量都大;这成为积极干涉。值得注意的是在大多数实际物理情形中,支配波的方程只是近似线性。在这些情形,叠加原理只是近似成立。作为一个法则,当波的振幅越小时近似的准确性程度越高。当叠加原理不是准确地成立时的现象可参见非线性光学与非线性声学。在量子力学中,一个主要问题是如何计算一个特定类型波的传播与行为。这个波叫做波函数,支配波的行为的方程称为薛定谔波动方程。计算一个波函数的行为的一个主要方法是将波函数写成(可能无穷个)一些行为特别简单的稳定态的波函数之叠加(称为量子叠加)。因为薛定谔波方程是线性的,原来波函数的行为可以通过叠加原理来计算,参见量子叠加。一类通常的边界值问题抽象地说是寻找一个函数 y 使其满足某个方程以及边界条件例如,在狄利克雷边界条件下拉普拉斯方程的中,F 是一个区域 R 上的拉普拉斯算子,G 是将 y 限制于 R 的边界上的算子,z 是 y 在 R 的边界上要求满足的函数。在这种情形下 F 与 G 都是线性算子,则叠加原理说第一个方程的一些解的叠加是第一个方程的另一个解:而边界值为:利用这一事实,如果一组解可以组成第一个方程的解,则这些解小心地叠加起来可使其满足第二个方程。这是解边界值问题的一个通常方法。

相关

  • 出生出生,或者出世,是指令后代降生于世的行为或过程。在哺乳动物中,这一过程由荷尔蒙控制,使得子宫壁肌肉收缩,并在胎儿具备呼吸、进食能力的时候将其排出。部分物种的子嗣较为早成(英
  • 巴库利德斯巴库利德斯(英语:Bacchylides /bəˈkɪlᵻˌdiːz/,古希腊语:Βακχυλίδης),约活动于公元前5世纪前后。古希腊抒情诗人之一,他常于进行抒情表达。与品达齐名,他的生平事迹
  • 素食素食主义(英语:vegetarianism),又称蔬食主义,素食,蔬食(英语:plant-based food)等,是一种有关饮食的文化,主张不食用飞禽、走兽、鱼虾等动物的身体,也就是肉类,实践这种饮食文化的人被称
  • 骆驼骆驼属(学名:Camelus)通称骆驼,是一种偶蹄目骆驼科的动物,主要有单峰骆驼和双峰骆驼两种,多见于沙漠地带。因其在沙漠以及酷暑、严寒等恶劣自然环境下仍能良好生存的生理特点,沙漠
  • 马桶坐垫纸马桶座垫纸是一种可用来覆于马桶座垫上的纸张。通常使用的原因是出于卫生考虑。但近期却有观点认为人们高估了马桶的致病几率,并称马桶座垫纸的心理安慰作用大于实际作用。20
  • 性特征第二性征是指动物在性趋于成熟时身体上出现的变化。男性的睾丸酮直接导致阴茎的成长。睾丸酮亦使肌肉的大小和质量增加,喉结变大,声音变得沙哑低沉。骨架变得宽大,身体脂肪量减
  • 吞咽吞咽(swallowing、有时称为 deglutition )是指物体从口腔移动到胃的过程。舌头往上抬的同时,食物便会被舌头推送进咽部,此时咽部的软颚便会往上提,鼻子的入口便会被封闭,以防止食
  • 门罗县门罗县(Monroe County, Georgia)是美国乔治亚州中部的一个县。面积1,030平方公里。根据美国2000年人口普查,共有人口21,757。县治福赛斯 (Forsyth)。成立于1821年5月15日,县名是
  • 异位性皮炎异位性皮肤炎(Atopic dermatitis,简称AD),又叫过敏性皮肤炎或异位性湿疹(Atopic eczema),常见症状包含发痒、红肿,以及皮肤龟裂。发炎区域常有清澈液体流出,液体会随着发炎时间越久而
  • 珍妮佛·杰森·李珍妮佛·杰森·李(英语:Jennifer Jason Leigh,1962年2月5日-)是一位美国女演员、导演、监制和编剧。较著名的作品如《布鲁克林黑街》(1989年)、《迈阿密特别行动》(1990年)、《浴火赤