Sandy Bridge微架构

✍ dations ◷ 2025-11-12 17:34:45 #X86架构,Intel处理器架构

Sandy Bridge,或简称SNB(英特尔官方简称)或沙桥(中国大陆的网友或玩家一般使用的简称),是Intel研发的中央处理器微架构之代号,2005年开始研发,是为Intel Nehalem微架构的继任者。2009年Intel公开展示使用Sandy Bridge微架构的处理器样品,2011年1月正式发布,仍然使用Intel Core系列处理器作为首发产品。Sandy Bridge微架构的处理器均使用32纳米平面双栅极晶体管的制程。依照Intel的‘Tick-Tock’策略,继任的Intel Ivy Bridge微架构是Intel Sandy Bridge微架构的制程改进版。Intel Ivy Bridge使用22纳米3D三栅极晶体管制程。2011年第四季度Intel展示使用Ivy Bridge微架构的处理器样品,并宣布于2012年中期陆续发布基于Ivy Bridge微架构的处理器。

Intel Sandy Bridge微架构的研发主要由Intel的以色列分公司的研发中心负责,原先Sandy Bridge代号为‘Gesher’(希伯来语中意为‘桥梁’)。后来为避免让人联想到以色列已解散政党‘Gesher political party’,遂改为现在的代号名称。研发计划组由Intel副总裁罗恩·弗里德曼领导并管理。2009年9月在Intel开发者论坛上,Intel展示了使用Sandy Bridge微架构的工程样品处理器,展示的工程样品处理器为A1步进,并运作于2.0GHz的时钟频率上。

与Intel Nehalem微架构的相近,L1缓存仍为每核心64KB(32KB数据缓存+32KB指令缓存),L2缓存每核心独占256KB,内置共享式L3缓存,最高可达20MB。

部分型号的处理器(如Core i3、Core i7等)会继续沿袭超线程技术,最高可达8核心,16线程。

在Intel Nehalem的制程改进版Intel Westmere上分立的显示芯片和CPU芯片的设计,在Intel Sandy Bridge上以GPU和CPU完整融合进一块芯片上的设计所取代,而且在Intel Sandy Bridge上显示核心将与CPU共享L3缓存,显示核心官方中文品牌名称为‘核芯显卡’(仅中国大陆)。移动平台的处理器均采用这种设计,而这种设计在桌面平台仅见于LGA1155平台。

Intel在Sandy Bridge上新增了Intel Quick Sync Video(快速视频同步)技术,支持硬件加速视频编码/解码。

延续Intel Nehalem的设计,存储器控制器和PCI Express控制器集成于CPU核心中,而且在Sandy Bridge上,存储器控制器的性能进一步提升,每个存储器通道每时钟周期支持两次访问操作。

仍然使用QPI/DMI总线,但处理器内部则改为环形总线(Ring Bus)的形式,单向传输位宽为256比特。处理器上各核心、GPU、缓存、存储器控制器、PCI Express控制器以及各种在处理器上的输出输入控制器等均以环形总线连接。

对分支预测器的设计进一步优化,扩大微码解码器缓存。电源和性能管理方面Turbo Boost(涡轮加速/睿频)则升级为2.0版本。

提升处理器运算超越函数的性能,优化AES加密性能(AES指令集)和SHA-1切细性能;新增256比特指令集AVX指令集,增强矢量运算能力和浮点运算能力。

Intel为Sandy Bridge微架构的处理器推出了6系列消费级芯片组和C200系列企业级芯片组。处理器插座也顺势更变:桌面型平台、服务器平台、工作站平台的为LGA 1155、LGA 2011、LGA 1356(仅服务器、工作站平台);移动平台的为BGA 1023/Socket G2、BGA 1224以及rPGA988B。

几乎所有的Sandy Bridge微架构的单核、双核甚至是四核的处理器都使用了同样为 0206A7h 的CPUID。这些信息使得不能由CPUID直接识别处理器型号,但仍可以透过PCI配置空间来识别。后来极致性能/服务器平台的Sandy Bridge-E,最高可达八核心十六线程,无集成显示核心的处理器则使用 0206D6h 和 0206D7h 的CPUID。详细的信息如列表所示:

2011年1月31日,Intel突然发布关于6系列芯片组的召回通知,原因是PCH芯片组上SATA控制器的瑕疵。

这个SATA控制器的问题,在于其SATA 3Gbps连接端口会随时发生故障而使主板失去与硬盘驱动器等设备的连线,尽管不会造成数据丢失等严重后果,而且SATA 6Gbps连接端口并没有这个问题。Intel认为这个瑕疵仅会使5%的用户在使用3年后才会出现问题,但尽管如此,重度输出输入负载会使这个问题更早暴露出来。

出现该问题的6系列芯片组批量属于正式发售的B2步进版本,原来的工程样品并没有发现该问题的存在。Intel事后也迅速停止了B2步进版本的6系列芯片组的生产,改为生产经过电路修正后的B3步进的6系列芯片组。对主板厂商和OEM主机厂商,对于已出货的B2步进批量,Intel给予采购厂商有偿退换B3步进批量的产品,召回和退换行动由2011年2月14日开始,截止至2011年4月,在Intel确认已回收完所有B2步进批量的6系列芯片组以后。在销售终端方面,主板厂商(例如华硕、技嘉等厂商)以及OEM品牌主机厂商(如DELL、HP等)则停止销售并回收在架的产品,由于Intel的召回行动并没有针对消费者,所以这些厂商有的自身出资为用户更换问题主板,有的则对问题主板用户提供技术支持(但可以选择自行与厂商联系更换)等。

由于芯片组的瑕疵,使得日后Sandy Bridge微架构处理器的销售受到了一定影响,毕竟要使用Sandy Bridge微架构处理器必须使用6系列/7系列(2011年第四季度推出)的芯片组,对于Nehalem微架构的5系列芯片组Intel则不予支持。尽管如此,新架构处理器的发布照常进行,并没有受到影响。问题被公布以后的两个星期,一些问题芯片组仍有少量出货,但主板厂商却要接受Intel的一系列条款,保证没有用户遇到芯片组出现问题的情况出现。

Intel从Sandy Bridge微架构开始,处理器与PCH芯片组、芯片组与各系统总线之间统一使用DMI总线连接,而且还把系统总线(包括USB、SATA、PCI、PCI-E、CPU核心外频、存储器控制器等)的时钟频率统一由PCH芯片组内置的时钟频率发生器(DMICLK)产生,基准为100MHz,不再外加时钟频率发生器CK505 External。在处理器的倍频被锁定的情况下,提升时钟频率只能通过提升基准时钟频率,在Sandy Bridge微架构上,由于一改变基准时钟频率(DMI总线时钟频率)就会连带改变所有系统总线的时钟频率,而部分系统总线(如SATA、PCI-E)并不能承受更高的时钟频率,致使基准时钟频率的提升空间被大大限制(仅能提升5%至7%),尽管DDR3系统存储器的时钟频率倍率没有限制。为照顾超频用户,Intel也顺势推出了不锁倍频的K/X系列处理器,允许用户可以调整出超过Turbo Boost最大倍频的倍频值,但最高倍频仍限制在57x。而在Sandy Bridge-E平台,限制相对放宽,Intel在BIOS/EFI中提供了几个基准频率的值以供用户选择。

在2010年的IDF上,Intel曾展示了一块未知型号的基于Sandy Bridge微架构的处理器,在风冷情况下稳定运作在4.9GHz上。

在6系列芯片组中,全线均采用LGA1155之处理器插座。H6X系列型号的H61芯片组不支持RAID,H67和H61不支持超频(即使是不锁倍频的K系列处理器),但支持核芯显卡显示输出;而P6X系列不支持核芯显卡的显示输出;只有Z68支持超频。

2012年中期推出的7系列全系列芯片组,除了供Intel Ivy Bridge使用以外,还可与Intel Sandy Bridge兼容,其中的Z7X型号的芯片组支持超频。而2011年后期发布的供Sandy Bridge-E处理器使用的X79芯片组,采用LGA2011插座,无显示输出支持。

Intel依照Tick-Tock策略,于2012年发布Sandy Bridge微架构的制程改进版Ivy Bridge;而2013年Intel将会发布全新的Haswell微架构,取代现行的Sandy Bridge以及Ivy Bridge。

相关

  • 诱发电位测试事件相关电位(英语:event-related potential,ERP)是一项基于脑电图技术的,在神经科学领域中有广泛应用的研究手段。在国际心理生理学研究学会(Society for Psychophysiological Re
  • 早期尼德兰画派早期尼德兰绘画也称佛兰芒原始绘画(荷兰语:Vlaamse Primitieven)是15及16世纪北方文艺复兴时勃艮第及哈布斯堡统治时的尼德兰地区的绘画作品,布鲁日、根特、图尔奈及布鲁塞尔是
  • 伊邪那岐板块伊邪那岐板块是一个大洋型的古板块,现在已经全部消减于北美洲板块之下。伊邪那岐板块之名来自日本神话中的开天辟地之祖伊邪那岐。该神的名称来自于古日语,在《古事记》中用汉
  • 北环路北环路可以指:
  • 沃尔夫冈·克特勒沃尔夫冈·克特勒(德语:Wolfgang Ketterle,1957年10月21日-),德国物理学家,现任麻省理工学院物理学教授。他的研究专注在冷原子的捕捉,以使这些原子接近绝对零度。在1995年时,他所领
  • 安妮·莱博维茨安妮·莱博维茨(英语:Annie Leibovitz, 1949年10月2日-),本名安娜-露·莱博维茨,美国肖像摄影师。安妮·莱博维茨出生于康乃狄克州沃特伯里,在家里六个小孩中排行第三。她是美国犹
  • 布兰登·卡特布兰登·卡特 FRS (英语:Brandon Carter,1942年-),澳大利亚理论物理学家,最知名于他对黑洞性质的研究和第一个命名并采用现代形式的人择原理。 他是法国国家科学研究中心巴黎天文
  • 乌鱼子乌鱼子是指一种以已孕的乌鱼卵巢统称“乌鱼子”,是盐渍后干燥的水产加工食品。野生乌鱼的卵颜色若是呈现成比起一般黄色或橘色的乌鱼子还要黑甚至是黑色,就是俗称“血子”或“
  • 电子磁偶极矩电子磁偶极矩 是在原子物理学中由电子自身自旋特性所引起的电子的磁矩 。电子磁偶极矩的值为−9284.764 × 10−27 J.T-1。最近量测到的电子磁偶极矩的精确度为7.6×10-13电
  • 防火防火是指研究和实践减低潜在火灾的机会的行为。它包括研究火的特性、分间(英语:Compartmentalization (fire protection))、控制和调查火或其他相关的紧急事件。 防火同时也包