首页 >
张量
✍ dations ◷ 2024-12-22 13:48:44 #张量
张量(英语:tensor)是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在
n
{displaystyle n}
维空间内,有
n
r
{displaystyle n^{r}}
个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。
r
{displaystyle r}
称为该张量的秩或阶(与矩阵的秩和阶均无关系)。在同构的意义下,第零阶张量(
r
=
0
{displaystyle r=0}
)为标量,第一阶张量(
r
=
1
{displaystyle r=1}
)为矢量, 第二阶张量(
r
=
2
{displaystyle r=2}
)则成为矩阵。例如,对于3维空间,
r
=
1
{displaystyle r=1}
时的张量为此矢量:
(
x
,
y
,
z
)
T
{displaystyle left(x,y,zright)^{mathrm {T} }}
。由于变换方式的不同,张量分成“协变张量”(指标在下者)、“逆变张量”(指标在上者)、“混合张量”(指标在上和指标在下两者都有)三类。在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。虽然张量可以用分量的多维数组来表示,张量理论存在的意义在于进一步说明把一个数量称为张量的涵义,而不仅仅是说它需要一定数量的有指标索引的分量。特别是,在坐标转换时,张量的分量值遵守一定的变换法则。张量的抽象理论是线性代数分支,现在叫做多重线性代数。本条目作出关于张量的非技术性介绍,并给出对描述不同的、互补的张量理论之细节简介。“张量”一词最初由威廉·罗恩·哈密顿在1846年引入,但他把这个词用于指代现在称为模的对象。该词的现代意义是沃尔德马尔·福格特在1899年开始使用的。这个概念由格雷戈里奥·里奇-库尔巴斯托罗在1890年在《绝对微分几何》的标题下发展出来,随着1900年列维-奇维塔的经典文章《绝对微分》(意大利文,随后出版了其他译本)的出版而为许多数学家所知。随着1915年左右爱因斯坦的广义相对论的引入,张量微积分获得了更广泛的承认。广义相对论完全由张量语言表述,爱因斯坦从列维-奇维塔本人那里学了很多张量语言(其实是Marcel Grossman,他是爱因斯坦在苏黎世联邦理工学院的同学,一个几何学家,也是爱因斯坦在张量语言方面的良师益友 - 参看Abraham Pais所著《上帝是微妙的(Subtle is the Lord)》),并学得很艰苦。但张量也用于其它领域,例如连续力学,譬如应变张量(参看线性弹性)。注意“张量”一词经常用作张量场的简写,而张量场是对流形的每一点给定一个张量值。要更好的理解张量场,必须首先理解张量的基本思想。一个 .mw-parser-output .serif{font-family:Times,serif}(p,q)型的张量 T 被定义为一个多重线性映射(multilinear map)其中 V 是矢量空间,V ∗ 是其对偶空间。有两种定义张量的方法:但物理学家和工程师是首先识别出矢量和张量作为实体具有物理上的意义的,它超越了它们的分量所被表述的(经常是任意的)坐标系。同样,数学家发现有一些张量关系在坐标表示中更容易推导。张量可以表述为一个值的序列,用一个矢量值的定义域和一个标量值的值域的函数表示。这些定义域中的矢量是自然数的矢量,而这些数字称为指标。例如,取一3阶张量尺寸为2x5x7。这里,指标的范围从<1,1,1>到<2,5,7>。张量可以在指标为<1,1,1>有一个值,在指标为<1,1,2>有另一个值,等等一共70个值。
(类似的,矢量可以表示为一个值的序列,用一个标量值的定义域和一个标量值的值域的函数表示,定义域中的数字是自然数,称为指标,不同的指标的个数有时称为矢量的维度。)一个张量场是在欧几里得空间中的每一点都给定一个张量值。这样不是像上面的例子中简单的有70个值,对于一个3阶张量,维度为<2,5,7>,空间中的每一个点有70个值和它相关。换句话说,张量场表示某个张量值的函数,其定义域为欧几里得空间。不是所有的函数都行—更多关于这些要求的细节参看张量场。不是所有自然中的关系都是线性的,但是很多是可微的因而可以局部的用多线性映射来局部的逼近。这样多数物理学中的量都可以用张量表示。作为一个简单的例子,考虑水中的船。我们要描述它对受力的反应。力是一个矢量,而船的反应是一个加速度,它也是一个矢量。通常加速度不是和受力的方向相同,因为船体的特定形状。但是,这个力和加速之间的关系实际上是线性的。这样一个关系可以用一个(1,1)类型(也就是说,它把一个矢量变成另一个矢量)的张量表示。这个张量可以用矩阵表示,当它乘以一个矢量时就得到另一个作为结果。坐标系改变的时候,表示一个矢量的数字会改变,同样,表示这个张量的矩阵中的数字也会改变。工程上,刚体或流体内的应力也用一个张量表示;"张量"一词的拉丁语就表示引起张力的某种拉伸。如果材料内的一个特定的表面元素被选出来,在表面一侧的材料会对另一侧的施加一个力。通常,该力不和表面正交,但是它将线性的依赖于表面的朝向。这可以精确用(2,0)类型的张量精确的描述,或者更精确地说,是用一个类型为(2,0)的张量场来表示,因为张量可能在每一个不同。另外一些著名的几何中张量的例子有二次型,以及曲率张量。物理张量的例子有能动张量,惯量和极化张量。几何和物理的量可以通过考虑它们的表述内在的自由度来分类。标量是那些可以用一个数表示的 ---
速率,质量,温度,等等。有一些矢量类型的量,例如力,它需要一个数字的列表来表述。最后,像二次型这样的量需要用多维数组来表示。后面这些量只能视为张量。实际上,张量的概念相当广泛,可以用于上面所有的例子;标量和矢量是张量的特殊情况。区别标量和矢量以及区别这两者和更一般的张量的特征是表示它们的数组的指标的个数。这个个数称为张量的阶。这样,标量是0阶张量(不需要任何指标),而矢量是一阶张量。张量的另外一个例子是广义相对论中的黎曼曲率张量,它是维度为<4,4,4,4>(3个空间维度 +时间维度 = 4个维度)的4阶张量。它可以当作256个分量(256 = 4×4×4×4)的矩阵(或者矢量,其实是个4维数组)。只有20个分量是互相独立的,这个事实可以大大简化它的实际表达。有几种想象和操作张量的等价方法;只有熟悉了这个课题,其内容是等价的这个事实才会变得明显。最终,同样的计算内容被表达出来,两种方式都可以。技术性术语列表请参看张量理论词汇。张量场也可有一个“密度”。密度为r的张量和普通张量一样坐标变换,但是它还要乘以雅可比矩阵的行列式值的第r次幂。这个的最佳解释可能是使用矢量丛:其中,切丛的行列式丛是一个线丛,可以用来'扭转'其它丛r次。其中,aij是坐标变换的雅可比矩阵。这里所有的分量假定为共变,反变的张量变换要用a的逆矩阵。注意这里是用了爱因斯坦记号。* |a|是aij的行列式。
相关
- 肾病肾病变、肾脏病(英语:Nephropathy、kidney disease、renal disease),又称肾损伤,指肾脏的疾病或是功能损伤。又分成非发炎性的肾病(英语:Nephrosis),以及发炎性的肾炎(英语:Nephritis)。
- 第十一版国际疾病分类人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学国际疾病分类第十一版(简称ICD-11),或称
- 肉毒杆菌素肉毒杆菌毒素(英文:BTX, Botulinum Toxin),也被称为肉毒毒素或肉毒杆菌素,是由肉毒杆菌于厌氧条件下生长时所产生的一类嗜神经性外毒素。肉毒杆菌毒素共有A、B、Cα、Cβ、D、E、
- 磺胺林磺胺林是一种磺胺类药物,其INN名称是“Sulfalene”。该药物可用于治疗慢性支气管炎、泌尿道感染和疟疾等病症。该药物在血液中的半衰期尚不明确,在大鼠体内的LD50(半致死量)为1.
- 法兰克人法兰克人(拉丁语:Franci 或 gens Francorum,英语:Franks)是对历史上居住在莱因河北部法兰西亚(Francia)地区的日耳曼人部落的总称。早期法兰克语已无确切证据可考,但在古法语和拉丁
- 苏丹黑B苏丹黑B(C29H24N6)是一种重氮脂肪染色剂,用于染中性的脂质冰冻切片和一些脂蛋白的石蜡切片。正常情况下为黑褐色或黑色粉末状。苏丹黑B是苏丹染剂之一,可用来提取指纹以及给成髓
- 上消化道消化系统(英语:digestive system)是多细胞生物用以进食、消化食物、获取能量和营养、排遗剩余废物的一组器官,其主要功能为摄食、消化、吸收、同化和排遗。其中有关排遗的部分,也
- 读音文白异读是汉语族的一种特有现象,一些汉字在汉语中有两种发音:文读和白读,两者代表不同的语音层次:汉语中的白读普遍是在《广韵》或更早的音系基础上继承和发展来的语言固有成分
- 乙硼烷乙硼烷是化学式为B2H6的无机化合物,是目前能分离出的最简单的硼烷。乙硼烷室温下为无色气体,可以与空气形成爆炸性混合物,并且在潮湿空气中自燃。有剧毒。乙硼烷具有较高的化学
- 幽门窦幽门(pylorus)是胃和十二指肠的连接口,包含幽门窦(pyloric antrum)和幽门管(pyloric canal)两个部分。幽门括约肌(pyloric sphincter)在幽门管末端,可以控制食物从胃进入十二指肠的过