三氯化铑

✍ dations ◷ 2025-09-07 11:11:39 #铑化合物,氯化物,铂系元素卤化物

三氯化铑(化学式:RhCl3),IUPAC名称氯化铑(III),是最常见和最稳定的铑的氯化物,室温下为暗红色的固体。它是从其他铂系元素中分离铑时的产物。

无水三氯化铑为聚合分子,与氯化铝类质同晶,在水中的溶解度随制备方法的不同而有差异。三水合三氯化铑(RhCl3·3H2O)是三氯化铑的水合物,也是三氯化铑最常用的形式,可溶于水,通常用于制备其他铑化合物。无水和三水合三氯化铑有很多不同的性质。

RhCl3(H2O)x是暗红色的反磁性晶体,有中等的潮解性,可溶于水得到红色溶液。该水溶液中存在RhCl3(H2O)3、+和2+等微粒,比例随放置时间长短而有变化。

把摩尔比为1:2的海绵铑和氯化钾一起研细,然后在氯气流中于550°C加热60分钟,用水浸泡红色产物,过滤,滤液中含有K2,加入足够量的氢氧化钾溶液,沉淀出氢氧化铑(III)(水合三氧化二铑)。洗涤沉淀后,将沉淀溶于尽量少的盐酸中,蒸发溶液近干,就可得到酒红色的RhCl3·3H2O晶体。将该晶体在浓盐酸中重结晶,去除含氮杂质,可以得到较纯净的三氯化铑三水合物。

在200-300°C时,氯气与铑反应,生成红色的RhCl3晶体,该晶体不溶于水。将RhCl3·3H2O在干燥氯化氢气流中加热到180°C,得到能溶于水的RhCl3。在前者反应中,若以熔融的氯化钠作介质,则反应产物为Na3RhCl6

三氯化铑三水合物是路易斯酸,可与配体生成种类繁多的配合物。与Rh(I)的平面正方特性不同,Rh(III)的配合物大多为八面体构型,在动力学上比较稳定。

氨与RhCl3·3H2O的乙醇溶液反应生成氯化五氨配离子2+。该离子被锌还原并用硫酸根成盐后,得到无色的氢配合物SO4

乙醇溶液中的RhCl3·3H2O会与二烷基硫醚反应:

反应产物为三氯·三硫醚合铑(III),已经分离出相应的面式(-)与经式(-)异构体。

温和条件下,RhCl3·3H2O与叔膦反应,生成RhCl3(PR3)3类型的配合物。反应若在煮沸乙醇溶液中进行,则铑被还原,生成Rh(I)的配合物,如威尔金森催化剂(Wilkinson's catalyst)—RhCl(PPh3)3。反应中的还原剂为乙醇或三苯基膦,相应氧化产物为乙醛和三苯基氧膦。

与乙醇和吡啶一起煮沸时,RhCl3·3H2O转化为反式-Cl。若溶剂为水,则得到与硫醚配合物结构类似的面式-RhCl3(py)3。反式-Cl氧化得到蓝色顺磁性的5+。

三氯化铑三水合物也可与烯烃配位,尤其是与降冰片二烯和1,5-环辛二烯一类的二烯烃,生成形式为Rh2Cl2(烯烃)4的配合物。它与1,5-环辛二烯的配合物尤其稳定,甚至在乙醇中与1,3-环辛二烯反应,也会得到1,5-环辛二烯的配合物。双烯配体可由氰离子移除。

RhCl3·3H2O的甲醇溶液与压强为1bar的一氧化碳反应,生成二氯·二羰基铑(I)酸根阴离子(−)。或用RhCl3·3H2O与通入的一氧化碳反应先生成2红色固体,然后再将该固体溶于醇并加入氯离子,也可得到−。

Rh(CO)(PR3)类型的化合物(R为有机基团)有很多是氢甲酰化反应的催化剂,其制备与性质也已被广泛研究过。RhCl(PPh3)3与一氧化碳或甲醛反应会生成反式-RhCl(CO)(PPh3)2,与Vaska配合物是同类物质,但不及后者活泼。它会与硼氢化钠和三苯基膦的混合物反应,得到RhH(CO)(PPh3)3

对三水合三氯化铑催化性质的研究大致开始于20世纪60年代。当时发现它对很多涉及一氧化碳、氢气和烯烃的反应都具有催化性能,例如用RhCl3(H2O)3作催化剂,乙烯发生二聚生成顺式和反式2-丁烯的混合物:

然而高级烯烃不能发生该反应。几十年后,人们发现含铑催化的反应在有机溶剂中进行时,有机配体会取代原化合物中的水分子配体,经由(Rh2Cl2(C2H4)4)一类的中间体。该发现推动了均相催化这一领域的发展。这之前大多数金属催化的反应都属于异相催化,反应物与催化剂处于两相,含金属的催化剂为固态,反应底物为液态或气态。

均相催化中,三苯基膦配合物是一类重要的催化剂,显示出较高的催化活性,并且对有机溶剂的溶解性也很好。这类配合物的例子包括RhCl(PPh3)3和RhH(CO)(PPh3)3,可分别催化烯烃的氢化和异构化反应及烯烃的氢甲酰化反应。目前高效的铑催化剂已经在很大程度上替代以前广泛使用且廉价的钴催化剂。

相关

  • 木栓木栓(英语:cork),或称木塞软木,是一种不透水的浮力材料,为木本植物树皮的外层保护组织。商用木栓主要从产自欧洲西南部与非洲西北部的西班牙栓皮栎(Quercus suber )上采剥。木栓的主
  • 法国历史法国历史开始于人类第一次踏足这片后来被称为法兰西的土地。从旧石器时代和新石器时代起,就陆续有人定居于此。到了青铜器时代和铁器时代,凯尔特人又源源不断地涌入。后来,公元
  • 肉桂醛肉桂醛(英语:Cinnamaldehyde),亦作桂皮醛,是一种醛类有机化合物,为黄色黏稠状液体,大量存在于肉桂等植物体内。肉桂的树皮(即桂皮)的特殊香味就是来源于这种化合物。 除肉桂外,樟树的
  • 路易斯·亨利·摩尔根路易斯·亨利·摩尔根(Lewis Henry Morgan,1818年11月21日 - 1881年12月17日),出生于纽约州奥罗拉,他是美国知名的人类学家和社会理论家的先驱人物,并且是十九世纪美国最伟大的社
  • 彼得·卡尔索普彼得·卡尔索普(英语:Peter Calthorpe,1949年 - )是一位来自旧金山的建筑师、城市设计师和城市规划师。他是新城市主义大会的创始成员,该大会是一个总部位于芝加哥的倡导组织,成立
  • 水产养殖业水产养殖(或称养殖渔业)是水产业的一种,系利用天然水面或人造池塭,放养经济价值较高之鱼类、贝类、甲壳类及藻类等之种苗,施与饵料,驱除病害,使其成长迅速,进而进行人工繁殖之有计划
  • 萨伏伊王朝萨伏依王朝(意大利语:Casa Savoia),是欧洲的一个王朝,曾于1861年至1946年统治意大利。其建立者为拥有萨伏依、莱茵河以东及日内瓦湖南部地区的亨伯特一世(卒于1048年?)。中世纪时期,
  • 特雷津泰雷津(捷克语:Terezín;德语:Theresienstadt,泰雷辛施塔特)是捷克的城镇,位于该国西北部奥赫热河畔,距离利托梅日采3公里,由乌斯季州负责管辖,面积13.52平方公里,海拔高度150米,2007年
  • 赫丘利在古罗马宗教和罗马神话中,赫丘利是一位英雄的神化,并纳入罗马的建国神话里面,之后罗马人将希腊神话中的海克力斯形象融入赫丘利,改编成自己的文学和艺术,但英雄相对具有罗马文化
  • 化学反应工程化学反应工程(英语:Chemical reaction engineering)是一门探讨如何将实验室的化学反应转移至工厂进行规模化与商业化应用的工程学科,为化学工程的分支(英语:Outline_of_chemical_e