夫琅禾费衍射

✍ dations ◷ 2024-12-22 16:17:35 #夫琅禾费衍射
在光学上,夫琅禾费衍射(以约瑟夫·冯·夫琅和费命名),又称远场衍射,是波动衍射的一种,在场波通过圆孔或狭缝时发生,导致观测到的成像大小有所改变,成因是观测点的远场位置,及通过圆孔向外的衍射波有渐趋平面波的性质。夫琅禾费衍射可在菲涅耳衍射的近场距离外观测到,而菲涅耳衍射会同时影响到成像的大小及形状,而且只会在菲涅耳数 F ≪ 1 {displaystyle Fll 1} 时才会发生,这时候可以使用平行光束近似。在标量衍射理论中,夫琅禾费近似是对菲涅耳衍射积分的远场近似式,F = a 2 L λ ≥ 1 {displaystyle F={frac {a^{2}}{Llambda }}geq 1}F = a 2 L λ ≪ 1 {displaystyle F={frac {a^{2}}{Llambda }}ll 1}λ {displaystyle lambda } - 波长, L {displaystyle L} - 离圆孔的矩离夫琅禾费衍射使用惠更斯-菲涅耳原理,藉以把通过圆孔或狭缝的一波动分成多个向外的波动,使用透镜来有目的地衍射光的观测实验一般被用作描述这个原理。当波动通过时,波动会被衍射分成两个波动,之后以平行的角度各自行进,后面跟着进来的波动亦是如此,在观测时把屏幕放在行进路线上来看成像条纹这个方法就用到这样的原理。当一遭到衍射的波动在最初衍射点的近场距离,在与其他波动平行下被观测到时,我们会看到菲涅耳衍射,因为用圆孔与屏幕 σ {displaystyle sigma } 间距离用菲涅耳数方程计算出的结果小于1,这方程可在观测平行波的衍射程度时用到,方程需要的物理量为圆孔或缝隙的大小 a {displaystyle a} 、波长 λ {displaystyle lambda } 以及离圆孔的距离 L {displaystyle L} 。当距离或波长增加时,由于在圆孔或物件边缘的波动开始变得像平面波,所以会产生夫琅禾费衍射。观测时,会看到菲涅耳衍射所产生的圆孔成像,大小与形状会与原来的圆孔不一样,即是说边缘多少会有一些锯齿在,但是夫琅禾费衍射的成像则只有大小的改变,这是因为远场的波动比较接近平行光束及平面波的性质。远场衍射条纹可在校准好的透镜的成像平面上被观测到(大小除外)。点状光源在衍射屏产生的远场条纹可在光源的成像平面上被观测到。假如一光源与观察用的屏幕离衍射圆孔(可以是狭缝)足够远的话,到达圆孔及屏幕的波前可被视为准直或平面波。菲涅耳衍射(或近场衍射)只会在上述情况不被满足时发生,而这时就需要考虑到入射波前的弧度。在远场衍射中,如果观测屏幕在圆孔不动时往后移动,则产生的条纹会一致地改变大小。但近场衍射则不会这样,衍射条纹的大小与影状都会改变。要做到夫琅禾费狭缝衍射,可以使用两块透镜及一片屏幕。使用点状光源及准直透镜可以做出平行光束,然后这光束会通过狭缝。狭缝后会有另一块透镜,把平行光束聚焦到屏幕上作观测之用。同样的设置可用于多狭缝衍射,会造出不同的衍射条纹。由于这种衍射数学上并不复杂,实验设置可以很准确地找出入射单色光的波长。在以下的表述,我们假设电场或其他场可用下式表示:下面将会假设所有的场大小都跟时间有关系,而关系式为 exp ⁡ ( − i ω t ) {displaystyle exp(-iomega t)} 。如果这些场入射 x y {displaystyle xy} 平面上的一个光圈,光圈的复数透射率为 T ( x , y ) {displaystyle T(x,y)} ,这样我们就可以通过惠更斯-菲涅耳原理及平行光束近似,来计算出远场衍射与远场球坐标角度 ( θ , ϕ , r ) {displaystyle (theta ,phi ,r)} 的关系函数,其中 k = 2 π / λ {displaystyle k=2pi /lambda } 为入射波动的波数。上式是光圈函数傅里叶变换,其中傅里叶核为注意光圈函数取的量为复数场,而不是波动的强度(振辐的平方)。复数值是用于表示相位差的。在许多个案中, y {displaystyle y} 、 ϕ {displaystyle phi } 及 θ ≪ 1 {displaystyle theta ll 1} 对衍射不构成影响。那么此时上面的积分式就可以被简化成其中我们同时也忽略掉与 r {displaystyle r} 的关系。这是从空间坐标 x {displaystyle x} 到 u ≡ k θ {displaystyle uequiv ktheta } 的傅里叶变换。在上述两种近似下,方程都不会提供绝对振幅,因为(电)场在空间积分后并不会像能量或功率这些物理量那样守恒。要求得振辐必须把积分归一化,使得夫琅禾费衍射最简单的例子是狭缝衍射,即   − a / 2 < x < a / 2 {displaystyle -a/2<x<a/2} 时   T ( x ) = 1 {displaystyle T(x)=1} ,而其他时候则   T ( x ) = 0 {displaystyle T(x)=0} 。在这个例子中,非归一化sinc函数的最大值位于 θ = 0 {displaystyle theta =0} ,而零值则位于 θ = ± n λ / a {displaystyle theta =pm nlambda /a} ,其中 n = 1 , 2 , … {displaystyle n=1,2,ldots } 。一高斯剖面(例如投影片上模糊的透光大圆点)为 f ( x ) = exp ⁡ ( − a x 2 ) {displaystyle f(x)=exp(-ax^{2})} 的光圈会造成例如,假设有一激光光,其强度剖面的半峰全宽为 W {displaystyle W} ,则 a = 2 ln ⁡ 2 / W 2 {displaystyle a=2ln 2/W^{2}} 。波长为 λ {displaystyle lambda } 时,波幅的剖面为也就是说强度的角半峰全宽为 2 λ ln ⁡ 2 / π W ≈ 0.44 λ / W {displaystyle 2lambda ln 2/pi Wapprox 0.44lambda /W} 。

相关

  • 重量在科学与工程学上,物体的重量指的通常是重力作用在它身上的力。重量是矢量,它的量(标量)一般用斜体 W {\displaystyle W} 表示。
  • 约塞米蒂瀑布优胜美地瀑布(Yosemite falls),是北美洲落差最大的瀑布,位于美国加州内华达山脉,属于优胜美地国家公园,其最壮观的季节在春末,水量充沛,气势惊人。又译为约塞米蒂瀑布。 优胜美地瀑
  • 语法语法(英语:Grammar),也称文法,在语言学中指任意自然语言中句子、短语以及词等语法单位的语法结构与语法意义的规律,本质上即音义结合体之间的结合规律。对于语法的研究称为语法学
  • 黑色黑色是具有多种不同文化意义的颜色。黑色可以定义为没有任何可见光进入视觉范围,和白色正相反,白色是所有可见光光谱内的光都同时进入视觉范围内。颜料如果吸收光谱内的所有可
  • 埃斯特雷马杜拉语埃斯特雷马杜拉语(Estremeñu)是一种罗曼语族语言,在西班牙的埃斯特雷马杜拉自治区使用。埃斯特雷马杜拉语通常分为三个分支(北部或“高埃斯特雷马杜拉语”——artu estremeñu,
  • 意大利天主教教区列表下列意大利天主教教区列表。意大利的天主教会共设有16个区域性教会、42个教省,大部分是由主教管理的教区,由总主教管理的教区称为总教区。
  • 全球竞争力报告这是一份由世界经济论坛所出版的年度报告。2018年全球竞争力前30之排名: (此次报告采用新的计算方式,因此分数有所变化,排名则是与已经重新计算的2017年报告作比较)2017-2018年全
  • 序列比对序列比对指将两个或多个序列排列在一起,标明其相似之处。序列中可以插入间隔(通常用短横线“-”表示)。对应的相同或相似的符号(在核酸中是A, T(或U), C, G,在蛋白质中是氨基酸残
  • 硬举硬拉(英语:Deadlift),又称拉举,是一种负重训练,主要用于锻炼下背部即竖脊肌、臀部肌肉和大腿肌肉,是世界力量举重锦标赛(WWC, World Weightlifting Championship)的项目之一,另外两项
  • 希腊银行希腊银行(希腊语:Τράπεζα της Ελλάδος,ΤτΕ),希腊的中央银行,位于雅典市。希腊银行始于1927年,1928年正式运作。希腊银行为欧洲中央银行体系的成员。现任行长