测度

✍ dations ◷ 2025-06-29 11:52:53 #测度论,测度

数学分析上,测度(英语:measure)是一个函数,它对一个给定集合的某些子集指定一个数。感官上,测度的概念相当于长度、面积、体积等。一个特别重要的例子是欧式空间上的勒贝格测度,它把欧式几何上传统的诸如长度、面积和体积等概念赋予 n 维欧式空间 R 。例如,实数区间 上的勒贝格测度就是它显而易见的长度,即 1。

传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。

测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。

X {\displaystyle X} 是个集合,定义在 X {\displaystyle X} 上的另一集合 A {\displaystyle {\mathcal {A}}} A {\displaystyle {\mathcal {A}}} 中的元素是 X {\displaystyle X} 的子集合,而且是一个σ-代数,测度 μ {\displaystyle \mu } (详细的说法是可数可加的正测度)是个定义在 A {\displaystyle {\mathcal {A}}} 上的函数,于 {\displaystyle } 中取值,且满足以下性质:

这样的三元组 ( X , A , μ ) {\displaystyle (X,{\mathcal {A}},\mu )} 称为一个测度空间,而 A {\displaystyle {\mathcal {A}}} 中的元素称为这个空间中的可测集合。

下面的一些性质可从测度的定义导出:

测度 μ   {\displaystyle \mu \ } 的单调性:若 E 1   {\displaystyle E_{1}\ } E 2   {\displaystyle E_{2}\ } 为可测集,而且 E 1 E 2 {\displaystyle E_{1}\subseteq E_{2}} ,则 μ ( E 1 ) μ ( E 2 ) {\displaystyle \mu (E_{1})\leq \mu (E_{2})}

E 1 , E 2 , E 3 {\displaystyle E_{1},E_{2},E_{3}\cdots } 为可测集(不必是两两不交的),则集合 E n   {\displaystyle E_{n}\ } 的并集是可测的,且有如下不等式(“次可列可加性”):

如果还满足并且对于所有的 n   {\displaystyle n\ } E n   {\displaystyle E_{n}\ } E n + 1   {\displaystyle E_{n+1}\ } ,则如下极限式成立:

E 1 , E 2 , {\displaystyle E_{1},E_{2},\cdots } 为可测集,并且对于所有的 n   {\displaystyle n\ } E n + 1   {\displaystyle E_{n+1}\ } E n   {\displaystyle E_{n}\ } ,则 E n   {\displaystyle E_{n}\ } 的交集是可测的。进一步说,如果至少一个 E n   {\displaystyle E_{n}\ } 的测度有限,则有极限:

如若不假设至少一个 E n   {\displaystyle E_{n}\ } 的测度有限,则上述性质一般不成立。例如对于每一个 n N {\displaystyle n\in \mathbb {N} } ,令

这里,全部集合都具有无限测度,但它们的交集是空集。

如果 μ ( X )   {\displaystyle \mu (X)\ } 是一个有限实数(而不是 {\displaystyle \infty } ),则测度空间 ( X , A , μ ) {\displaystyle (X,{\mathcal {A}},\mu )} 称为有限测度空间。非零的有限测度与概率测度类似,因为可以通过乘上比例因子 1 μ ( X ) {\displaystyle {\frac {1}{\mu (X)}}} 进行归一化。如果 X   {\displaystyle X\ } 可以表示为可数个可测集的并集,而且这些可测集的测度均有限,则该测度空间称为 σ {\displaystyle \sigma } -有限测度空间。如果测度空间中的一个集合 A   {\displaystyle A\ } 可以表示为可数个可测集的并集,而且这些可测集的测度均有限,就称 A   {\displaystyle A\ } 具有 σ {\displaystyle \sigma } -有限测度。

作为例子,实数集赋以标准勒贝格测度是 σ {\displaystyle \sigma } -有限的,但不是有限的。为说明之,只要考虑闭区间族,k取遍所有的整数;这样的区间共有可数多个,每一个的测度为1,而且并起来就是整个实数集。作为另一个例子,取实数集上的计数测度,即对实数集的每个有限子集,都把元素个数作为它的测度,至于无限子集的测度则令为 {\displaystyle \infty } 。这样的测度空间就不是 σ {\displaystyle \sigma } -有限的,因为任何有限测度集只含有有限个点,从而,覆盖整个实数轴需要不可数个有限测度集。 σ {\displaystyle \sigma } -有限的测度空间有些很好的性质;从这点上说, σ {\displaystyle \sigma } -有限性可以类比于拓扑空间的可分性。

对于一个可测集 N {\displaystyle N} ,若 μ ( N ) = 0   {\displaystyle \mu (N)=0\ } 成立,则称为零测集,其子集称为可去集。

一个可去集未必是可测的,但零测集一定是可去集。

如果所有的可去集都可测,则称该测度为完备测度。

一个测度可以按如下的方式延拓为完备测度:

考虑 X {\displaystyle X} 的所有与某个可测集 E {\displaystyle E} 仅差一个可去集的子集 F {\displaystyle F} ,可得到 E {\displaystyle E} F {\displaystyle F} 的对称差包含于一个零测集中。

由这些子集 F {\displaystyle F} 生成的σ代数,并定义 μ ( F ) = μ ( E ) {\displaystyle \mu (F)=\mu (E)} ,所得到的测度即为完备测度。

下列是一些测度的例子(顺序与重要性无关)。

其它例子,包括:狄拉克测度、波莱尔测度、若尔当测度、遍历测度、欧拉测度、高斯测度、贝尔测度、拉东测度。

相关

  • 混凝土混凝土,又称砼(tóng)、石矢,是由凝胶材料、骨料和水按适当比例配置,再经过一定时间硬化而成的复合材料。混凝土的硬度大、耐压强度高、坚固耐用、原料来源广泛、制作方法简单、
  • 奥德修斯奥德修斯(奥德赛斯,希腊语:Ὀδυσσεύς,转写:Odysseus)也作“尤利西斯”(拉丁语:Ulixes,转写:Ulysses),是传说中希腊西部伊萨卡岛之王,拉厄耳忒斯子,阿尔克修斯孙。曾参加特洛伊战争
  • 基因打靶基因标的(英语:gene targeting,又称为基因标靶)是一种利用同源重组方法改变生物体某一内源基因的遗传学技术。这一技术可以用于删除某一基因、去除外显子或导入点突变,从而可以对
  • 法融牛头宗|弘忍东山宗 – 神秀北宗禅|惠能南宗禅 – 北荷泽宗|南洪州宗|南石头宗|保唐宗惠能系曹溪南宗 –禅,汉传佛教术语,原为禅那(巴利语:jhāna,梵语:dhyāna)的简称,为“三无漏学
  • 宿州市宿州市,简称宿,是中华人民共和国安徽省下辖的地级市,位于安徽省北部,是淮海经济区的核心城市之一,也是安徽省距离出海口最近的城市。宿州市是苏鲁豫皖四省交汇的区域性中心城市。
  • 干事长自由民主党干事长,是日本自由民主党执行部成员之一,相当于秘书长的职务,与总务会长、政务调查会长并称为辅助党总裁的“党三役”。是实际上的第二把手,尤其因为自民党总裁长期担
  • 路易斯·布兰迪斯路易士·布兰戴斯(英语:Louis Dembitz Brandeis,1856年11月13日-1941年10月3日)美国律师,1916年获伍德罗·威尔逊总统提名为美国最高法院大法官,直到1939年。是第一位担任此职的犹
  • 电话窃听电话窃听(英语:Telephone tapping,美式英语又作wire tapping、wiretapping),是由对话之外的第三方,对电话或互联网中的交谈及资料交换,进行监视、窃听的行为。电话窃听违反了秘密通
  • 怀化通道万佛山景区万佛山可以指:
  • 布鲁塞尔证券交易所布鲁塞尔证券交易所(英语:Brussels Stock Exchange,BSE;法语:Bourse de Bruxelles, 荷兰语:Beurs van Brussel)于1801年由拿破仑诏令建立于比利时布鲁塞尔。2000年9月22日,BSE与巴黎