首页 >
杠杆
✍ dations ◷ 2025-07-18 16:36:44 #杠杆
在力学里,典型的杠杆(lever)是置放连结在一个支撑点上的硬棒,这硬棒可以绕着支撑点旋转。当杠杆静力平衡时,其动力乘以动力臂等于阻力乘以阻力臂,可以透过改变动力臂或阻力臂长度,使输入力放大或缩小,有着相当实用的功能,古希腊人将杠杆归类为简单机械。早在旧石器时代晚期,古人就知道使用杠杆的原理来制作投枪器。
考古学者认为,在古埃及4500多年前的金字塔时期,工人使用杠杆来移动、抬举重量超过100英吨的方尖碑。
中国战国时期,墨子在所著作的《墨子》一书中,提到应用杠杆的概念。大约在公元前330年,亚里斯多德在著作《机械问题》(《Mechanical Problems》)里,对于杠杆有详细的论述,并且基本而言使用虚功的现代概念推导出杠杆原理。公元前3世纪,古希腊科学家阿基米德在著作《论平面图形的平衡》里用几何方法推导出杠杆原理,并且宣称:“给我一个支点,我就可以撬动整个地球。”由于杠杆内部有一点为固定点,杠杆只能绕着这固定点做旋转运动。相对于这一点,杠杆不能做平移运动。理想杠杆不会耗散或储存能量,也就是说,支点与硬棒之间不会出现任何摩擦损耗,硬棒是一种刚体,不会被弯曲,发生形变。注意到硬棒不一定是直棒。弯曲的硬棒形成的杠杆称为“曲杠杆”。对于理想杠杆案例,输入杠杆的功率等于杠杆输出的功率。输出力与输入力之间的比率,等于这两个作用力分别与支点之间垂直距离的反比率,称这相等式为“杠杆原理”,以方程表达:或者,定义力矩
M
{displaystyle M}
为其中,
F
{displaystyle F}
是作用力,
D
{displaystyle D}
是作用力与支点之间的垂直距离。则输入力矩等于输出力矩:杠杆原理表明,当静力平衡时,动力乘以动力臂等于阻力乘以阻力臂:靠着比较动力臂、阻力臂的长度,可以将杠杆分为三类:另外一种分类法式依照动力点、阻力点、支点在杠杆的相对位置来分类。第一类杠杆的动力点、阻力点分别在支点的两边。例如,铁撬、剪刀、跷跷板、天平、尖嘴钳。第二类杠杆的动力点、支点分别在阻力点的两边。例如,独轮车、胡桃夹子、开瓶器。这是一种省力杠杆,可以施加较小的力量来移动较重的物体,但是动力的位移较长。第三类杠杆的阻力点、支点分别在动力点的两边。例如,镊子、钉书机、扫把。这是一种费力杠杆,可以节省动力的位移。杠杆是可以绕着支点旋转的硬棒。当外力作用于杠杆内部任意位置时,杠杆的响应是其操作机制;假若外力的作用点是支点,则杠杆不会出现任何响应。假设杠杆不会耗散或储存能量,则杠杆的输入功率必等于输出功率。当杠杆绕着支点呈匀角速度旋转运动时,离支点越远,则移动速度越快,离支点越近,则移动速度越慢,由于功率等于作用力乘以速度,离支点越远,则作用力越小,离支点越近,则作用力越大。机械利益是阻力与动力之间的比率,或输出力与输入力之间的比率。假设动力臂
D
1
{displaystyle D_{1}}
、阻力臂
D
2
{displaystyle D_{2}}
分别为动力点、阻力点与支点之间的距离,动力
F
1
{displaystyle F_{1}}
、阻力
F
2
{displaystyle F_{2}}
分别作用于动力点、阻力点。则机械利益
M
A
{displaystyle MA}
为通常在学习杠杆的初级理论时,会聚焦于输入力和输出力由于虚位移而做的虚功。虚位移可以定义为物体的移动速度乘以虚时间。这样定义导致计算的物理量是功率,而不是功。这种方法有一个实在优点:在研究机械工程学或机构学时,功率是主要计算的物理量。使用这种方法来对杠杆做静力分析,就如同对于车子的传动系统,或机械手臂做静力分析,它们的机械利益的计算方式完全一样。复式杠杆(compound lever)是一组耦合在一起的杠杆,前一个杠杆的阻力会紧接地成为后一个杠杆的动力。几乎所有的磅秤都会应用到某种复式杠杆机制。其它常见例子包括指甲剪、钢琴键盘。1743年,英国伯明翰发明家约翰·外艾特(英语:John Wyatt)在设计计重秤时,贡献出复式杠杆的点子。他设计的计重秤一共使用了四个杠杆来传输负载。负:衡木加重焉而不挠,极胜重也。右校交绳,无加焉而挠,极不胜重也。衡加重于其一旁必捶,权重相若也。相衡则本短标长,两加焉重相若,则标必下,标得权也。挈:有力也,引无力也。不正所挈之止于施也,绳制挈之也,若以锥刺之。挈,长重者下,短轻者上,上者愈得,下下者愈亡。绳直权重相若,则正矣。收,上者愈丧,下者愈得,上者权中尽,则遂。
相关
- 卡尔·乌斯卡尔·理查德·乌斯(英语:Carl Richard Woese,1928年7月15日-2012年12月30日),生于纽约州锡拉丘兹,美国微生物学家和生物物理学家。乌斯因在1977年由对16S 核糖体RNA系统发生分类学
- Memento moriMemento mori(拉丁语词组,意思为“勿忘你终有一死”)是中世纪西方基督教对必死性之反思的理论及实践,尤其是作为一种思索尘世之虚幻和一切物质与和世俗工作之短暂的方式。它经常
- 肾上腺素能受体激动剂肾上腺素能受体(英语:Adrenergic receptors,或称为肾上腺素受体)是一类接受儿茶酚胺类物质刺激的代谢型G蛋白偶联受体,所接受的儿茶酚胺类主要是去甲肾上腺素以及肾上腺素。尽管
- 红细胞生成红细胞生成(英语:erythropoiesis)是指红细胞的生成过程。缺氧时,会促进肾脏产生促红细胞生成素。这种激素可以刺激红细胞前体细胞的增殖分化,并最终在造血组织中发育成为成熟的红
- 弥涅墨斯弥涅墨斯(希腊语:Μίμνερμος,英语:Mimnermus,鼎盛期在前630年-前600年),古希腊哀歌诗人。弥涅墨斯生活在一个战乱时期,当时小亚细亚的爱奥尼亚城邦正在抵抗兴起的吕底亚王
- 阿波罗登月计划阴谋论阿波罗登月计划阴谋论(英语:Moon landing conspiracy theories)是一系列针对美国阿波罗登月计划(1961年-1972年)的怀疑论(骗局论、造假论),阿波罗登月计划是NASA与部分组织协助下所制
- 三轴剪切试验三轴试验(Triaxial test)或三轴剪切试验(Triaxial shear test),是土力学中现有决定剪应力强度参数最可靠的方法之一。它在例行性试验或研究中广泛为使用。在此试验中,一般所之土壤
- 麻省理工学院马萨诸塞理工学院(英语:Massachusetts Institute of Technology,缩写为MIT),位于美国马萨诸塞州剑桥市,是一所著名的私立研究型大学。学校成立于1861年,主校区沿查尔斯河而建,当时目
- 刘裕宋武帝刘裕(363年4月16日-422年6月26日),字德舆,小字寄奴,彭城绥舆里(今江苏省徐州市铜山区)人,东晋末年至南北朝初期的军事家、政治家,南北朝时期刘宋的开国皇帝。早年出身十分贫寒,刘
- 侯增谦侯增谦(1961年6月-),中国矿床学家,中国地质科学院地质研究所所长,中国科学院院士。侯增谦1961年6月出生于河北省藁城县(今石家庄市藁城区),1978~1982年在河北地质学院(今河北地质大学)矿