原子谱线

✍ dations ◷ 2025-06-07 23:09:25 #发射光谱

物理学中,原子谱线是指原子内部电子跃迁形成的谱线,可分为两类:

这两类谱线中所对应的两个跃迁能级需要对应着电子的束缚态,因而这类跃迁有时也被称为“束缚态-束缚态”跃迁,与之对应的是电子从束缚态获取足够的能量从而从原子中完全逸出(“束缚态-自由态”跃迁)。自由态的电子具有连续谱,此时的原子被电离,而过程所辐射的能谱也是连续的。

跃迁中辐射或吸收的单个光子所携带的能量等于电子跃迁的两个能级之差,用普朗克关系式即描述为能级差 E = h ν {\displaystyle E=h\nu \,} ,其中 ν {\displaystyle \nu \,} 是光子的频率,而 h {\displaystyle h\,} 是普朗克常数。

原子谱线中发射谱线的辐射能量可用一个发射系数 ϵ {\displaystyle \epsilon \,} 来表示,其含义为单位时间单位体积单位立体角内辐射的能量。由此, ϵ d t d V d Ω {\displaystyle \epsilon dtdVd\Omega \,} 则是在单位时间 d t {\displaystyle dt\,} 内从单位体积 d V {\displaystyle dV\,} 中朝单位立体角 d Ω {\displaystyle d\Omega \,} 方向上所辐射的能量。对原子发射谱线,发射系数为

其中 n 2 {\displaystyle n_{2}} 是处于发射状态的原子的数密度,而 A 21 {\displaystyle A_{21}} 是自发辐射的爱因斯坦系数,这个系数对于任意两个特定的能级是定值。根据基尔霍夫热辐射定律,空间一定区域内的吸收特性是与它的发射特性密切相连的,因此我们也要同时考虑吸收谱线的吸收系数。吸收系数 κ {\displaystyle \kappa \,} 具有“1/长度”的量纲,从而 κ d x {\displaystyle \kappa dx\,} 给出的是频率为一定的光在行走了距离 d x {\displaystyle dx\,} 后被吸收的光强占总光强的比例。吸收系数的表达式为

类似发射系数, n 1 {\displaystyle n_{1}} 是处于吸收状态的原子的数密度, B 12 {\displaystyle B_{12}} B 21 {\displaystyle B_{21}} 分别是爱因斯坦系数中的自发吸收和受激辐射的系数,它们对于任意两个特定的能级也是定值。

当系统处于局部的热平衡状态时,处于基态和激发态的原子各自的数密度满足麦克斯韦-玻尔兹曼分布;但对于非热平衡状态的情形(例如激光),原子的数密度分布计算会相当复杂。

上面列出的公式都假设了谱线对应的频率是单一的,即谱线是无形状的几何线,忽略了实际中不确定性原理及多普勒效应等因素造成的谱线展宽,实际的谱线是覆盖一段频率带宽的,具有一定的谱线形状。精确计算时要求这些公式乘以归一化的谱线形状,从而得到带有“1/频率”的量纲。

1916年,阿尔伯特·爱因斯坦指出在原子谱线的形成中存在三种基本过程,它们分别被称作自发辐射、受激辐射和(受激)吸收。每一种过程都对应着一个所谓爱因斯坦系数,表征着该过程所发生的几率。

自发辐射即是电子在不受外界影响下自发地从高能级向低能级跃迁的过程。描述这一过程的是爱因斯坦系数 A 21 {\displaystyle A_{21}\,} ,它具有秒-1的量纲,表征的是在单位时间内电子从高能级 E 2 {\displaystyle E_{2}\,} 向低能级 E 1 {\displaystyle E_{1}\,} 自发跃迁并释放出能量为 h ν = E 2 E 1 {\displaystyle h\nu =E_{2}-E_{1}\,} 的光子的几率。由于能量-时间之间的不确定性关系,这一过程产生的光子实际占据了一段很窄的频率范围,即具有一定的线宽。如果假设处在两个能级的原子数密度分别为 n 2 {\displaystyle n_{2}\,} n 1 {\displaystyle n_{1}\,} ,则自发辐射导致的低能级原子数密度 n 1 {\displaystyle n_{1}\,} 变化率为

受激辐射是指当原子接受到外界的电磁辐射,而外界电磁辐射的频率恰好等于(或接近)电子在某两个能级跃迁时释放光子的频率时,符合这样条件的电子受到激发从高能级向低能级跃迁的过程。描述这一过程的是爱因斯坦系数 B 21 {\displaystyle B_{21}\,} ,它具有球面度·米2·赫兹·瓦特-1·秒-1(相当于球面度·米2·焦耳-1·秒-1)的量纲,表征的是在单位时间内辐射场的单位辐射亮度下电子从高能级 E 2 {\displaystyle E_{2}\,} 向低能级 E 1 {\displaystyle E_{1}\,} 受激跃迁并释放出能量为 h ν = E 2 E 1 {\displaystyle h\nu =E_{2}-E_{1}\,} 的光子的几率。如果假设处在两个能级的原子数密度分别为 n 2 {\displaystyle n_{2}\,} n 1 {\displaystyle n_{1}\,} ,则受激辐射导致的低能级原子数密度 n 1 {\displaystyle n_{1}\,} 变化率为

其中 ρ ( ν ) {\displaystyle \rho (\nu )} 是辐射场的辐射密度,它是受激频率 ν {\displaystyle \nu \,} 的函数(参见普朗克定律)。

受激辐射是激光技术诞生的理论基础。

吸收是原子吸收光子,使其内部的一个电子从低能级向高能级跃迁的过程。描述这一过程的是爱因斯坦系数 B 12 {\displaystyle B_{12}\,} ,它也具有球面度·米2·赫兹·瓦特-1·秒-1(相当于球面度·米2·焦耳-1·秒-1)的量纲,表征的是在单位时间内辐射场的单位辐射亮度下电子吸收能量为 h ν = E 2 E 1 {\displaystyle h\nu =E_{2}-E_{1}\,} 的光子并从低能级 E 1 {\displaystyle E_{1}\,} 向高能级 E 2 {\displaystyle E_{2}\,} 跃迁的几率。如果假设处在两个能级的原子数密度分别为 n 2 {\displaystyle n_{2}\,} n 1 {\displaystyle n_{1}\,} ,则吸收导致的低能级原子数密度 n 1 {\displaystyle n_{1}\,} 变化率为

爱因斯坦系数对于每一个原子而言代表了确定的跃迁几率,而与原子所组成的气体所处的状态无关。从而,我们在热平衡条件下从这些系数所作的推导具有普适性。

在热平衡状态下,我们可以假设一个简单的情形,即处于任何激发态的原子的总变化率为零,也就是说通过所有的辐射和吸收过程达到激发态和离开激发态的原子数量保持相等。由于这些跃迁都属于束缚态-束缚态之间的跃迁,我们认为这种平衡是一种细致平衡,也就是说任意两个能级间的总交换保持平衡,这是由于电子跃迁的几率不会受到其他激发态原子存在与否的影响。细致平衡(仅在热平衡状态下成立)要求处于低能级的原子数密度因三种基本过程引起的变化恒定为零:

在细致平衡的情形下,我们可以使用平衡态下的原子按能量的分布规律(遵循麦克斯韦-玻尔兹曼分布)以及平衡态下光子的分布(遵循普朗克黑体辐射定律)来推导爱因斯坦系数间的普适性关系。

对麦克斯韦-玻尔兹曼分布我们将原子的任意激发态记作i:

这里 n {\displaystyle n\,} 是包括处于激发态和基态的原子的总数密度; k {\displaystyle k\,} 是玻尔兹曼常数; T {\displaystyle T\,} 是温度, g i {\displaystyle g_{i}\,} 是激发态i的简并度; Z {\displaystyle Z\,} 是系统的配分函数。根据普朗克黑体辐射定律,我们有在频率 ν {\displaystyle \nu \,} 下黑体的辐射亮度为

其中

其中 c {\displaystyle c\,} 是光速, h {\displaystyle h\,} 是普朗克常数。注意在某些计算中使用的是黑体的能量密度而不是辐射亮度,能量密度的形式为

将这些表达式代入细致平衡方程并利用 E 2 E 1 = h ν {\displaystyle E_{2}-E_{1}=h\nu } 可得到

上面的方程必须对所有温度都成立,从而三个爱因斯坦系数之间可建立如下关系:

如果把这个关系代入初始的方程,也可以得到 A 21 {\displaystyle A_{21}} B 12 {\displaystyle B_{12}} 的关系式,这个关系式将普朗克定律蕴含在其中(参见光子#受激辐射和自发辐射)。

相关

  • 亚伦·贝克亚伦·特姆金·贝克(英语:Aaron Temkin Beck,1921年7月18日-),美国精神病医生,同时也是宾夕法尼亚大学精神病学的名誉教授。他是认知疗法之父,他开创性的理论被广泛应用于临床治疗抑
  • 非晶物质无定形体,或称无定形体、无定形形固体,是其中的原子不按照一定空间顺序排列的固体,与晶体相对应。常见的无定形体包括玻璃和很多高分子化合物如聚苯乙烯等。只要冷却速度足够快
  • 实用新型实用新型是一种保护发明的知识产权权利。这种权利在一部分国家通过立法存在,例如阿根廷、奥地利、巴西、智利、中国、丹麦、芬兰、法国、德国、匈牙利、意大利、日本、马来西
  • 朱敬一朱敬一(1955年10月29日-),台湾经济学家。台大商学系毕业,美国密歇根大学经济学博士,曾任中华民国(台湾)常驻世界贸易组织(WTO)代表团常任代表、美国国家科学院海外院士。朱敬一于1998
  • 薛笃弼薛笃弼(1892年-1973年7月9日),字子良,山西省解州人,中华民国、中华人民共和国政治家。北洋政府、国民政府人物,曾为冯玉祥属下。他毕业于公立山西法政学校。1911年(宣统三年)他加入中
  • G点G点(英语:G-spot),有时称为格雷芬贝格点(英语:Gräfenberg spot,取自德国妇产科医生欧斯特·格雷芬贝格(德语:Ernst Gräfenberg))。是女性阴道中一处被认定为性感带的区域。受到刺激时
  • 兀雷帖木儿汗鬼力赤(蒙古语:.mw-parser-output .font-mong{font-family:"Menk Hawang Tig","Menk Qagan Tig","Menk Garqag Tig","Menk Har_a Tig","Menk Scnin Tig","Oyun Gurban Ulus Ti
  • 身心症身心性疾病,也翻译成身心症(somatoform disorder),是指由心理引起生理的疾病。
  • 菲达干酪菲达干酪(希腊语:φέτα)产自希腊。传统的菲达干酪主要以绵羊奶制作,但现时的菲达干酪已经改用牛奶制成。这种干酪没有外壳,干酪肉是白色,坚实但易碎,上面有小洞眼及裂缝,味道强烈
  • 帕塞 (梅克伦堡-前波美拉尼亚)帕塞(德语:Passee)是德国梅克伦堡-前波美拉尼亚州的一个市镇。总面积16.14平方公里,总人口177人,其中男性95人,女性82人(2011年12月31日),人口密度11人/平方公里。