在数论中,合数(也称为合成数)是除了1和其本身外具有其他正因数的正整数。依照定义,每一个大于1的整数若不是质数,就会是合数。而0与1则被认为不是质数,也不是合数。例如,整数14是一个合数,因为它可以被分解成。
起初120个合数为: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 158, ...(OEIS中的数列A002808)。
分类合数的一种方法为计算其质因数的个数。一个可表示为两个质数之乘积的合数称为半质数,有三个质因数的合数则称为楔形数。在一些的应用中,亦可以将合数分为有奇数的质因数的合数及有偶数的质因数的合数。对于后者,
(其中μ为默比乌斯函数且为质因数个数的一半),而前者则为
注意,对于质数,此函数会传回-1,且。而对于有一个或多个重复质因数的数字,。
另一种分类合数的方法为计算其正因数的个数。所有的合数都至少有三个正因数。一质数的平方,其正因数有。一数若有着比它小的整数都还多的正因数,则称此数为高合成数。另外,完全平方数的正因数个数为奇数个,而其他的合数则皆为偶数个。
合数也可分基本合数(有2和3因子的),阴性合数(形)和阳性合数(形)三种。