波矢

✍ dations ◷ 2025-12-01 14:10:22 #波矢
波矢是波的矢量表示方法。波矢是一个矢量,其大小表示波数( k = | k | = 2 π / λ {displaystyle k=|{mathbf {k} }|=2pi /lambda } ),其方向表示波传播的方向。波矢在狭义相对论背景下可定义为四维矢量。波矢有两种常见的定义,区别在于振幅因子是否乘以 2 π {displaystyle 2pi } ,两种定义分别用于物理学和晶体学以及它们的相关领域。理想的一维行波遵循如下方程:其中:此波在+x方向上行进,相速度为 ω / k {displaystyle omega /k} 。推广到三维情况下,方程为:其中:这一方程描述了平面波。一维情况下,波矢的大小是角波数 | k | = 2 π / λ {displaystyle |{mathbf {k} }|=2pi /lambda } 。波矢的方向是平面波行进的方向。在晶体学中,描述相同的波的方程略有不同。在一维和三维情况下的方程分别为:不同点在于:接近单色光的波包可以由波矢准确描述,若明确的改写成共变和反变形式,则于是波矢的大小为最后一步等于零是因为对于真空中的光满足对波矢作洛伦兹变换可导出相对论性多普勒效应。洛伦兹矩阵定义为在光被快速移动的波源激发的情况下,若要在地球坐标系(实验室坐标系)中检定光的频率,就要使用洛伦兹变换,如下所示。注意波源位于坐标系S s,地球位于观测系S obs。 对波矢进行洛伦兹变换得到只考虑 μ = 0 {displaystyle mu =0} 分量的情况,得到其中 cos ⁡ θ {displaystyle cos theta ,} 是 k 1 {displaystyle k^{1}} 关于 k 0 {displaystyle k^{0}} 的方向余弦 k 1 = k 0 cos ⁡ θ {displaystyle k^{1}=k^{0}cos theta } 。因此当波源径直地远离观测者时, θ = π {displaystyle theta =pi } ,方程变为:当波源径直地接近观测者时, θ = 0 {displaystyle theta =0} ,方程变为:

相关

  • 增长的极限《增长的极限》是罗马俱乐部于1972年发表的、对世界人口快速增长的模型分析结果。丹尼斯·米都斯(Dennis L. Meadows)主笔。这本书用World3模型对地球和人类系统的互动作用进
  • 张华张华(232年-300年),字茂先,范阳方城(今河北固安县)人。西晋文学家、诗人、政治家。父张平,曹魏时渔阳郡太守。张华幼年丧父,家贫然勤学,“学业优博,图纬方伎之书,莫不详览”。有“人伦鉴
  • 三国志《三国志》是由西晋陈寿所著,记载中国三国时代历史的断代史,同时也是二十四史中评价最高的“前四史”之一。陈寿曾任职于蜀汉,蜀汉灭亡之后,被征入洛阳,在西晋也担任了著作郎的职
  • HArF氟氩化氢(化学式:HArF)是一个氩的化合物,也是目前唯一被发现的氩化合物。氩氟化氢是一群由马库·拉萨能(Markku Räsänen)领导的芬兰化学家发现的,他们在2000年8月24日将发现氟氩
  • 第戎1法国统计部门在计算土地面积时,不计算面积大于1平方公里的湖泊、池塘、冰川和河口。第戎(法语:Dijon),法国东部城市,勃艮第-弗朗什-孔泰大区的首府和科多尔省的省会,也是该大区内
  • 布利奶酪布里奶酪(法文:Brie,又译布利奶酪),是一种柔软的奶酪,以牛奶或者羊奶发酵制成。布里奶酪起源于历史上法国北部的布里(英语:Brie (region))地区(现塞纳-马恩省、部分马恩省和部分埃纳省
  • 像差在光学中,像差(英语:Optical aberration)指的是实际成像与根据单透镜理论确定的理想成像的偏离。这些偏离是折射作用造成的。色差是由透镜对色光的不同弯曲能力所致,并造成带有色
  • 电流密度在电磁学里,电流密度(current density)是电荷流动的密度,即每单位截面面积电流量。电流密度是一种矢量,一般以符号 J
  • 鲁戈瓦易卜拉欣·鲁戈瓦(阿尔巴尼亚语:Ibrahim Rugova,1944年12月2日-2006年1月21日),出生于第二次世界大战意大利王国占领下的南斯拉夫,阿尔巴尼亚族,科索沃共和国国父。是前科索沃总统及
  • 宿雾市宿务市(宿务语:Dakbayan sa Sugbo;英文:Cebu City)是菲律宾宿务省的首府,也是菲律宾第二大城。宿务市位于宿务岛东南岸,是首都马尼拉也无法比拟的菲律宾历史悠久之城。由于位处菲律