极化

✍ dations ◷ 2025-08-02 00:46:55 #极化
在经典电磁学里,当给电介质施加一个电场时,由于电介质内部正负电荷的相对位移,会产生电偶极子,这现象称为电极化(英语:electric polarization)。施加的电场可能是外电场,也可能是嵌入电介质内部的自由电荷所产生的电场。因为电极化而产生的电偶极子称为“感应电偶极子”,其电偶极矩称为“感应电偶极矩”。电极化强度又称为“电极化矢量”,定义为电介质内的电偶极矩密度,也就是单位体积的电偶极矩。这定义所指的电偶极矩包括永久电偶极矩和感应电偶极矩。它的国际单位制度量单位是库仑每平方米(coulomb/m2),表示为矢量 P。电极化强度 P 定义为电介质单位体积 V 内的电偶极矩 p 的平均值:可以理解为在材料区域内电偶极子的强度和对齐程度。这个定义很容易推广到解析定义,即电极化就是电偶极矩微元 dp 与体积微元 dV 的比值:这反过来便能导出电极化的物体的电偶极矩的一般表达式:这表明 P-场与磁化强度 M-场是完全类似的:对于由一个外加电场引起的 P 值的计算,必须已知电介质的电极化率 χ(见下文)。束缚电荷是束缚于电介质内部某微观区域的电荷。这微观区域指的是像原子或分子一类的区域。自由电荷是不束缚于电介质内部某微观区域的电荷。电极化会稍微改变物质内部的束缚电荷的位置,虽然这束缚电荷仍旧束缚于原先的微观区域,但这会形成一种不同的电荷密度,称为“束缚电荷密度” ρ b o u n d {displaystyle rho _{bound}} :注意刚才研究的是电偶极子中伸出界面的那部分,原微观区域的束缚电荷符号相反,故有负号。总电荷密度 ρ t o t a l {displaystyle rho _{total}} 是“自由电荷密度” ρ f r e e {displaystyle rho _{free}} 与束缚电荷密度的总和:在电介质的表面,束缚电荷以表面电荷的形式存在,其表面密度称为“面束缚电荷密度” σ b o u n d {displaystyle sigma _{bound}} :其中, n ^ o u t {displaystyle {hat {mathbf {n} }}_{mathrm {out} },} 是从电介质表面往外指的法矢量。假若,电介质内部的电极化强度是均匀的, P {displaystyle mathbf {P} } 是个常数矢量,则 ρ b o u n d {displaystyle rho _{bound}} 等于0,这电介质所有的束缚电荷都是面束缚电荷。假设电极化强度含时间,则束缚电荷密度也含时间,因而产生了“电极化电流密度” J p {displaystyle mathbf {J} _{p}} (A/m2):那么,电介质的总电流密度 J t o t a l {displaystyle mathbf {J} _{total}} 是其中, J f r e e {displaystyle mathbf {J} _{free}} 是“自由电流密度”, J b o u n d {displaystyle mathbf {J} _{bound}} 是“束缚电流密度”, M {displaystyle mathbf {M} } 是磁化强度。“自由电流”是由外处进来的电流,不是由电介质的束缚电荷所构成的电流。“束缚电流”是由电介质束缚电荷产生的磁偶极子所构成的电流,一个原子尺寸的现象。电极化强度 P {displaystyle mathbf {P} } 、电场 E {displaystyle mathbf {E} } 、电势移 D {displaystyle mathbf {D} } ,这三个矢量的关系式为一个定义式:其中, ϵ 0 {displaystyle epsilon _{0}} 是电常数。对于各向同性、线性电介质,电极化强度 P {displaystyle mathbf {P} } 和电场 E {displaystyle mathbf {E} } 的比例是电极化率 χ e {displaystyle chi _{e}} :所以,电势移与电场成正比:其中, ε {displaystyle varepsilon } 是电容率。电极化强度 P {displaystyle mathbf {P} } 、电场 E {displaystyle mathbf {E} } 、电势移 D {displaystyle mathbf {D} } ,这三个矢量的方向都一样。另外,假设这电介质具有均匀性,则电容率 ϵ {displaystyle epsilon } 是常数:对于各向异性、线性电介质,电极化强度和电场的方向不一定一样。电极化强度的第 i {displaystyle i} 个分量与电场的第 j {displaystyle j} 个分量的关系式为其中, χ {displaystyle chi } 是电介质的电极化率张量。例如,晶体光学(crystal optics)就会研究到很多各向异性电介质晶体。电磁学所讲述的物理量大多都是巨观的平均值,像电场平均值、偶极子密度平均值、电极化强度平均值等等,都是取于一个超大于原子尺寸的区域。只有这样,科学家才能够研究一个电介质的连续近似。而当研究微观问题时,对于在电介质内的单独粒子,其极化性跟电极化率平均值、电极化强度平均值的关系,可以用克劳修斯-莫索提方程来表达。假若电极化强度和电场不呈线性正比,则称这电介质为非线性电介质。非线性光学可以用来描述这种电介质的性质。假设电场 E {displaystyle mathbf {E} } 足够地微弱,不存在任何永久电偶极子,则电极化强度 P {displaystyle mathbf {P} } 可以令人相当满意地以泰勒级数近似为其中, χ ( 1 ) {displaystyle chi ^{(1)}} 是线性电极化率, χ ( 2 ) {displaystyle chi ^{(2)}} 给出波克斯效应(Pockels effect), χ ( 3 ) {displaystyle chi ^{(3)}} 给出克尔效应(Kerr effect)。对于铁电材料,因为迟滞现象, P {displaystyle mathbf {P} } 与 E {displaystyle mathbf {E} } 之间,不存在一一对应关系。

相关

  • 止吐药止吐剂(英语:Antiemetic),又称止吐药,广义上的止吐药指一切用于治疗恶心与呕吐的药物。由于呕吐是一种复杂的反射活动,由多种因素引起,故不同作用机理的止吐药只能针对其中一种或多
  • 卵巢卵巢(英语:ovary;拉丁语:ovarium)在解剖学中是指动物雌性体内制造卵子的一对性腺体。其中人类的卵巢呈现为卵圆形、偏灰的粉红色,是非常坚实的器官,形状类似于一个大葡萄。在子宫的
  • 立陶宛立陶宛国家图书馆,正式称作马尔蒂纳斯·马日维达斯立陶宛国家图书馆(立陶宛语:Lietuvos nacionalinė Martyno Mažvydo biblioteka),位于立陶宛首都维尔纽斯,为一国家级文化机构,
  • 欧洲人高加索人种(英语:Caucasian race, Caucasoid),或称欧罗巴人种,是在欧洲、北非、非洲之角、西亚、中亚、南亚、北美、南美和大洋洲的人口中常见的人种。这个术语在体质人类学中用
  • 股动脉脉冲股动脉(拉丁语:arteria femoralis)来自外髂动脉,为供应下肢的主要动脉。 外髂动脉在经过腹股沟韧带深层后改名为总股动脉。之后总股动脉会分为股动脉及深股动脉,在股三角(英语:femo
  • 伦理现代生物分类群体从它们的 共同祖先遗传分化的图示。进化论介绍(英语:Introduction to evolution) 演化的证据 共同起源 共同起源的证据群体遗传学 · 遗传多样性 突变 · 自
  • 棘头动物门棘头动物门(学名:Acanthocephala)是动物界的一个门。是一类身体前端有吻,吻上有钩刺的假体腔动物。棘头动物属于寄生动物,吻上的钩刺用来抓住它的寄主肠壁。它们具有复杂的生命周
  • CdS硫化镉是硫和镉的无机化合物,化学式为CdS。它是一种N型光电导半导体材料。属Ⅱ-Ⅵ族化合物半导体。分子量144.476,属六方晶格结构,晶格常数5.86×10-10m,熔点1750℃,禁带宽度2.
  • 世袭贵族世袭贵族(英语:Hereditary peer),英国的一种贵族爵位。全国大约有八百个持有世袭头衔的贵族。大部分世袭贵族以前在上议院拥有席位。国会通过1999年上议院法令(House of Lords Ac
  • 类转录活化因子核酸酶类转录活化因子核酸酶(英语:Transcription activator-like effector nucleases, TALENs)是融合TAL因子DNA-结合区域和DNA剪切区域产生的人工制造的限制酶。限制酶是在特定顺序