首页 >
极化
✍ dations ◷ 2025-09-12 23:24:57 #极化
在经典电磁学里,当给电介质施加一个电场时,由于电介质内部正负电荷的相对位移,会产生电偶极子,这现象称为电极化(英语:electric polarization)。施加的电场可能是外电场,也可能是嵌入电介质内部的自由电荷所产生的电场。因为电极化而产生的电偶极子称为“感应电偶极子”,其电偶极矩称为“感应电偶极矩”。电极化强度又称为“电极化矢量”,定义为电介质内的电偶极矩密度,也就是单位体积的电偶极矩。这定义所指的电偶极矩包括永久电偶极矩和感应电偶极矩。它的国际单位制度量单位是库仑每平方米(coulomb/m2),表示为矢量 P。电极化强度 P 定义为电介质单位体积 V 内的电偶极矩 p 的平均值:可以理解为在材料区域内电偶极子的强度和对齐程度。这个定义很容易推广到解析定义,即电极化就是电偶极矩微元 dp 与体积微元 dV 的比值:这反过来便能导出电极化的物体的电偶极矩的一般表达式:这表明 P-场与磁化强度 M-场是完全类似的:对于由一个外加电场引起的 P 值的计算,必须已知电介质的电极化率 χ(见下文)。束缚电荷是束缚于电介质内部某微观区域的电荷。这微观区域指的是像原子或分子一类的区域。自由电荷是不束缚于电介质内部某微观区域的电荷。电极化会稍微改变物质内部的束缚电荷的位置,虽然这束缚电荷仍旧束缚于原先的微观区域,但这会形成一种不同的电荷密度,称为“束缚电荷密度”
ρ
b
o
u
n
d
{displaystyle rho _{bound}}
:注意刚才研究的是电偶极子中伸出界面的那部分,原微观区域的束缚电荷符号相反,故有负号。总电荷密度
ρ
t
o
t
a
l
{displaystyle rho _{total}}
是“自由电荷密度”
ρ
f
r
e
e
{displaystyle rho _{free}}
与束缚电荷密度的总和:在电介质的表面,束缚电荷以表面电荷的形式存在,其表面密度称为“面束缚电荷密度”
σ
b
o
u
n
d
{displaystyle sigma _{bound}}
:其中,
n
^
o
u
t
{displaystyle {hat {mathbf {n} }}_{mathrm {out} },}
是从电介质表面往外指的法矢量。假若,电介质内部的电极化强度是均匀的,
P
{displaystyle mathbf {P} }
是个常数矢量,则
ρ
b
o
u
n
d
{displaystyle rho _{bound}}
等于0,这电介质所有的束缚电荷都是面束缚电荷。假设电极化强度含时间,则束缚电荷密度也含时间,因而产生了“电极化电流密度”
J
p
{displaystyle mathbf {J} _{p}}
(A/m2):那么,电介质的总电流密度
J
t
o
t
a
l
{displaystyle mathbf {J} _{total}}
是其中,
J
f
r
e
e
{displaystyle mathbf {J} _{free}}
是“自由电流密度”,
J
b
o
u
n
d
{displaystyle mathbf {J} _{bound}}
是“束缚电流密度”,
M
{displaystyle mathbf {M} }
是磁化强度。“自由电流”是由外处进来的电流,不是由电介质的束缚电荷所构成的电流。“束缚电流”是由电介质束缚电荷产生的磁偶极子所构成的电流,一个原子尺寸的现象。电极化强度
P
{displaystyle mathbf {P} }
、电场
E
{displaystyle mathbf {E} }
、电势移
D
{displaystyle mathbf {D} }
,这三个矢量的关系式为一个定义式:其中,
ϵ
0
{displaystyle epsilon _{0}}
是电常数。对于各向同性、线性电介质,电极化强度
P
{displaystyle mathbf {P} }
和电场
E
{displaystyle mathbf {E} }
的比例是电极化率
χ
e
{displaystyle chi _{e}}
:所以,电势移与电场成正比:其中,
ε
{displaystyle varepsilon }
是电容率。电极化强度
P
{displaystyle mathbf {P} }
、电场
E
{displaystyle mathbf {E} }
、电势移
D
{displaystyle mathbf {D} }
,这三个矢量的方向都一样。另外,假设这电介质具有均匀性,则电容率
ϵ
{displaystyle epsilon }
是常数:对于各向异性、线性电介质,电极化强度和电场的方向不一定一样。电极化强度的第
i
{displaystyle i}
个分量与电场的第
j
{displaystyle j}
个分量的关系式为其中,
χ
{displaystyle chi }
是电介质的电极化率张量。例如,晶体光学(crystal optics)就会研究到很多各向异性电介质晶体。电磁学所讲述的物理量大多都是巨观的平均值,像电场平均值、偶极子密度平均值、电极化强度平均值等等,都是取于一个超大于原子尺寸的区域。只有这样,科学家才能够研究一个电介质的连续近似。而当研究微观问题时,对于在电介质内的单独粒子,其极化性跟电极化率平均值、电极化强度平均值的关系,可以用克劳修斯-莫索提方程来表达。假若电极化强度和电场不呈线性正比,则称这电介质为非线性电介质。非线性光学可以用来描述这种电介质的性质。假设电场
E
{displaystyle mathbf {E} }
足够地微弱,不存在任何永久电偶极子,则电极化强度
P
{displaystyle mathbf {P} }
可以令人相当满意地以泰勒级数近似为其中,
χ
(
1
)
{displaystyle chi ^{(1)}}
是线性电极化率,
χ
(
2
)
{displaystyle chi ^{(2)}}
给出波克斯效应(Pockels effect),
χ
(
3
)
{displaystyle chi ^{(3)}}
给出克尔效应(Kerr effect)。对于铁电材料,因为迟滞现象,
P
{displaystyle mathbf {P} }
与
E
{displaystyle mathbf {E} }
之间,不存在一一对应关系。
相关
- 病症人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学症状(英语:symptom)又称病状,医学术语,在疾
- 变性变性人又称换性、性转者(英语:Transsexual),其经历性别认同与其出生时的指定性别不一致或没有文化的相关性,并希望身体永久转变为符合他们的性别认同,通常寻求医疗援助(包括激素替
- 血液检验项目正常参考值范围血液检验项目正常参考值范围(英语:Reference ranges for blood tests),指的是医疗保健专家从血液样品中选取的一组用来描述医疗检验结果的正常参考值。血液检验的测量值在临床中
- 醛固酮醛固酮(英语:Aldosterone)是一种类固醇类激素(盐皮质激素家族),由肾上腺皮质所产生,主要作用于肾脏,进行钠离子及水分的再吸收,以维持血压的稳定。整体来说,醛固酮为一种增进肾脏对于
- 保罗·博耶保罗·德罗斯·博耶(Paul Delos Boyer,1918年7月31日-2018年6月2日),美国生物化学家。因阐明三磷酸腺苷生物合成的机理而与约翰·沃克、延斯·克里斯蒂安·斯科共同获得1997年的
- span class=chemf style=white-space:nowrap;Nsub4/sub&氮4是一种由四个氮原子组成的氮单质,化学式为“N4”,其分子呈正四面体形。N4与N2、N3是同素异形体。N4最初由罗马大学的Fulvio Cacace及其同事发现,并命名为“tetranitrogen”(
- 正交正交晶系,也叫斜方晶系。 该晶系特点是没有高次对称轴,二次对称轴和对称面总和不少于三个。晶体以这三个互相垂直的二次轴或对称面法线为结晶轴。α=β=γ=90o;a≠b≠c。非均质
- 钠23钠-23(23Na)是钠元素其中的一种最稳定、含量最丰富的同位素。已发现钠的同位素有15种,包括钠19至钠33,其中只有钠23是稳定的,其他同位素都带有放射性。原子量是22.98977 u。 过
- b北周/b font style=color:#888small557-581/small<北周(557年—581年)是中国历史上南北朝的北朝之一。又称后周(宋朝以后鲜用),由宇文氏建立,定都长安,北周自建国后,统治实权一直在霸府宇文护身上,皇帝无力与之抗阻,为了摆脱宇文护的束
- 迈克尔·塞拉迈克尔·塞拉(英语:Michael Sela,1924年-),以色列生物化学家、免疫学家。塞拉在魏茨曼研究所跟伊弗雷姆·卡齐尔研究,在那里他获得了博士学位。作为一个学生毕业后,他曾与克里斯蒂安