全集

✍ dations ◷ 2024-12-28 04:30:49 #集合论基本概念,集合族

数学上,特别是在集合论和数学基础的应用中,全类(Universe,若是集合,则为全集)大约是这样一个类,它(在某种程度上)包含了所有的研究对象和集合。

这个一般概念有数个精确的版本。最简单的可能就是,任意集合都可以是全集。当研究一个特定集合的时候,这个集合就是全集。若研究实数,则所有实数的集合实数线 R {\displaystyle \mathbb {R} } 的子集。集合 A {\displaystyle A} 的圆形的外面的部分。严格地说,这是对的 U A {\displaystyle U\backslash A} 是全集的场合下,这可以被当成是的 A C {\displaystyle A^{C}} )下的所有东西组成的集合。

在基于布尔格的代数方法研究基础集合理论时,这种惯例非常有用。但对公理化集合论的一些非标准形式并非如此,例如新基础集合论,这里所有集合的类并不是布尔格,而仅仅是相对有补格。相反,的幂集,即的所有子集组成的集合,是一个布尔格。上述的绝对补集是布尔格中的补运算;而空交集则作为布尔格中的最大元(或空交)。这里,适用于补运算、交运算和并运算(集合论中的并集)的德·摩根律成立,而且对空交和空并(即空集)也成立。

然而,当考虑过给定集合 X {\displaystyle X} 的子集组成的集合。(例如:上的一个拓扑就是一个的子集组成的集合。)这些不同的的子集组成的集合本身,一般而言并不是的子集,却是的幂集 P X {\displaystyle \mathbf {P} X} 的子集组成的集合所组成的集合,等等。另一个方向是:可以考虑笛卡尔积 X × X {\displaystyle X\times X} 映射到其自身的函数。接着,还可以考虑笛卡尔积上的函数,或从映射到 X × P X {\displaystyle X\times \mathrm {P} X} ,仍然需要一个比大很多的全集。顺着上面的思路,可能需要上的超结构。这可以通过结构递归来定义,如下:

注意到,无论初始集合如何,空集总是属于 S 1 X {\displaystyle \mathbf {S} _{1}X} 元组,表示定义域为冯·诺伊曼序数 {\displaystyle } 上的超结构包含了所有的遗传有限集合。这样,它可以被认为是“有限主义数学的全集”。可以想像一下,假若19世纪的有限主义者利奥波德·克罗内克当时能使用到这个全集的话;他会相信每个自然数都存在,而集合 N {\displaystyle \mathbb {N} } ;而现在,它们是全集的。这样尽管 P ( S X ) {\displaystyle \mathbf {P} (\mathbf {S} X)} 进行, S N {\displaystyle \mathbf {S} \mathbb {N} } 序数 i {\displaystyle i} 定义 V i {\displaystyle V_{i}} 。所有 V i {\displaystyle V_{i}} 的并集为冯·诺伊曼全集 V {\displaystyle V}

相关

  • 系统生物学系统生物学(Systems biology),是一个试图整合不同层次信息以理解生物系统如何行使功能的学术领域。通过研究某生物系统各不同部分之间的相互关系和相互作用(例如,与细胞信号传送
  • 肉毒杆菌素肉毒杆菌毒素(英文:BTX, Botulinum Toxin),也被称为肉毒毒素或肉毒杆菌素,是由肉毒杆菌于厌氧条件下生长时所产生的一类嗜神经性外毒素。肉毒杆菌毒素共有A、B、Cα、Cβ、D、E、
  • 炼金术士炼金术是中世纪的一种化学哲学的思想和始祖,是当代化学的雏形。其目标是通过化学方法将一些基本金属转变为黄金,制造万灵药及制备长生不老药。现在的科学表明这种方法是行不通
  • 共价键共价键(英语:covalent bond),是化学键的一种。两个或多个非金属原子共同使用它们的外层电子(砷化镓为例外),在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做
  • 唯独古兰经唯独古兰经(阿拉伯语:قرآنيون‎),简称唯经派,是指视《古兰经》为唯一尊崇的信仰依据的伊斯兰运动;唯独古兰经者拒绝圣训、圣行和传统伊斯兰教法,这与什叶派、逊尼派、艾巴德
  • 联邦存款保险公司美国联邦存款保险公司(英文:Federal Deposit Insurance Corporation,缩写:FDIC),是一个在大萧条时期由美国联邦政府创办、为商业银行储蓄客户提供存款保险的公司。目前为每一银行
  • 无种无种(梵语:नकुल,IAST:Nakula)是印度史诗摩诃婆罗多中的人物。他是般度五子中的第四位,与弟弟偕天两人为双胞胎,由玛德利借用贡蒂的咒语召唤双马童所得来。因此,两人也被称作Ashv
  • 范妮·采齐莉·门德尔松范妮·采齐莉·门德尔松(德语:Fanny Cäcilie Mendelssohn,1805年11月14日-1847年5月14日),夫姓为亨塞尔(Hensel),德国钢琴家,作曲家。费利克斯·门德尔松之姐。她自幼就显示出色的音
  • 犍为站.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 格雷的五十道阴影《格雷的五十道阴影》(英语:),是英国作家EL·詹姆丝(E. L. James)所写的一系列情欲小说的第一部,于2011年出版。该三部曲的余下两部为《更黑的五十道阴影(Fifty Shades Darker)》和《