印第安纳圆周率法案

✍ dations ◷ 2025-10-03 15:51:21 #圆周率,印第安纳州议会,伪科学

印第安纳圆周率法案(Indiana Pi Bill)是1897年当时的印第安纳州议会第246号法案的一个常用名称,这一法案因试图以法律命令强制规定数学真理而臭名昭著。尽管名为圆周率法案,但实际上该法案的主要内容是化圆为方的一种解法,而非确定数学常数圆周率(π)的值。但是该法案的确间接提到了圆周率的错误值,例如3.2。

在该法案在立法机构投票表决当天,恰逢普渡大学教授C·A·沃尔多(英语:C. A. Waldo)在场,由于他的干预,该法案并未成为正式法律。

在1882年,费迪南德·冯·林德曼已证明化圆为方问题仅以尺规作图不能完成。而对于圆周率,在古时即有比该法案更为精确的估计值。

在1894年,印第安纳州医师、业余数学家爱德华·J·古德温(Edward J. Goodwin,1825年-1902年)坚信自己发现了化圆为方的正确解法。他向州参议员泰勒·I·瑞克德(Taylor I. Record)提出一项议案,后由瑞克德以《一项旨在通过法律形式确立一个新的数学真理,并且在1897年议会官方通过并接受的前提下,将该真理作为对于教育的贡献授权给印第安纳州免费使用,不收取任何形式专利使用费的议案》( "A Bill for an act introducing a new mathematical truth and offered as a contribution to education to be used only by the State of Indiana free of cost by paying any royalties whatever on the same, provided it is accepted and adopted by the official action of the Legislature of 1897")这样一个长标题提交给众议院。

该法案的文本中包含一系列数学结论,之后是古德温之前一系列成就的详述:

……他在三等分角、倍立方以及化圆为方上的解法已经作为对于科学的贡献被《美国数学月刊》刊载……需要注意的是提到的这些难题已经被科学界认为是不可解的谜题、超越人类认知能力而很早就放弃。

古德温的所谓“解法”的确刊载在了《美国数学月刊》上,但是带有“应作者要求刊载”的免责声明。

自该法案提交到印第安纳州众议院后,该法案的行文和主题在议员中产生了误解:来自印第安纳州布卢明顿的一位议员提议将法案送交金融委员会审议,但是议长接受了另一位议员的建议,将其送交沼泽委员会审议,以便该法案可以“找到一个恰如其分的坟墓”。:385该法案被转交给教育委员会,获得较好反响;在搁置议事规则(英语:Suspension of the rules)的动议之后,该法案于2月6日通过,:390无一票反对。有关该法案的新闻引起了印第安纳波利斯当地一家德语报纸《每日电讯报》(Der Tägliche Telegraph)的注意,他们对该事件的态度明显比英文竞争对手相比更加负面。:385就在讨论结束之际,普渡大学教授C·A·沃尔多为获得印第安纳州科学院的年度拨款来到印第安纳波利斯。一位议员将该法案拿给他看,并提出可以向其引荐撰写它的天才。沃尔多婉拒,表示自己已经见过很多疯子,无意见更多。

在送交印第安纳州参议院时,由于沃尔多已经提前向参议院普及数学知识,该法案并没有如众议院一般的待遇。负责审议该法案的委员会对其评价负面,参议院在2月12日将其搁置;:386法案一度即将通过,但是在一名参议员提出议会没有权力定义数学真理后,主流观点开始转变。:391同时《芝加哥论坛报》等主流报纸也开始嘲笑这一事件,听到报告后的参议院观点也受到影响。:390

根据《印第安纳波利斯新闻报》2月13日的报道:

……这一法案被拿出来被众人嘲笑。参议员们用它打一些糟糕的俏皮话,讥讽它,嘲笑它。这欢乐的场景足足持续了半个小时。参议员哈贝尔表示众议院每天花费250美元,不应该把钱浪费在这种无稽之谈上。他说在读到芝加哥和东部一些主流报纸的报道后,他发现印第安纳州立法机构因为接受审议该法案的行为已经遭到广泛的嘲笑。他认为审议这一议案有辱参议院之名。他提议无限期推迟审议该法案,该动议获得通过。

尽管该法案通常被称为“圆周率法案”,但是该法案的文本中却并没有提及到圆周率,古德温认为圆周长与直径的比率同他的主要目的化圆为方相比是次要的。在第2章中这样写道:

此外,90度角的弦长与弧长之比为7比8,正方形对角线和一边之比为10比7,可以推出第四个重要的结论,即直径与周长之比为5/4比4。

这近乎于直接宣布 π = 4 1.25 = 3.2 {\displaystyle \pi ={\frac {4}{1.25}}=3.2} 2 = 10 7 1.429 {\displaystyle {\sqrt {2}}={\frac {10}{7}}\approx 1.429}

这一引言常被认为是三个相互矛盾的论断,但是如果对于√2的论断是针对圆内接正方形(以圆的直径作为对角线)而非以半径为边的正方形(90度弦为对角线),那么它们三者就一致了。它们共同描述了如图所示的圆,圆的直径为10,周长为32;90度弦长被认为是7。7和32这两个值都在真实数值几个百分比的误差以内(这并不能成为古德温将其当作准确值的理由)。周长应该更加接近31.4159,而对角线7应该是50的平方根,约等于7.071。

古德温的主要目的不是为了测量圆内的各长度,而是为了化圆为方,他用字面意思将其理解为“找一个跟圆有同一面积的正方形”。他知道阿基米德求圆面积的公式,用直径乘以周长的四分之一,并不被认为是古老的化圆为方问题的一种解法。因为该问题要求只能使用尺规作图来“构建”圆的面积,而阿基米德并没有给出如何画出同圆的周长一样长的直线的作图方法。古德温很显然并不了解这一中心要求;他认为阿基米德公式的问题在于它的出了错误的数值结果,而要破解这一古老的问题,就需要将其替换为“正确的”公式。在他的议案中,他未加证明地提出了自己的方法:

圆的面积为等长于该圆周四分之一之线的平方,当一个正四边形的面积为其边长的平方。

按照其化圆为方的目的与定义,一个“正四边形”即为正方形。简而言之,该论断认为圆的面积和一个等周长的正方形面积相等。这一论断导致了其他的数学矛盾,古德温试图进行解释。例如,在上面这一句话之后,法案继续声称:

现行规则中用于计算圆的面积时使用的直线单位——直径是完全错误的,因为它所代表的圆的面积是周长相等的正方形面积的一又五分之一倍。

根据上述的圆模型,阿基米德公式计算出的面积(假设古德温的直径和周长值是正确的)为80,而按照古德温的建议,其面积应该为64。而因为80比64多了80的五分之一,而古德温很显然是混淆了64 = 80×(1−1⁄5),误写成80 = 64×(1+1⁄5)。

根据古德温的规则计算出的的圆的面积为π⁄4乘以该圆的真实面积。在诸多有关圆周率法案的描述中,这被认为是宣称π = 4。但是,该法案的文字并无法证明古德温做过这样的论断,相反,它反复否认圆的面积和直径有任何关系。

相对面积误差1−π⁄4约等于21%,这比起上一节中长度的估算值问题要严重得多。尚不清楚为何古德温认为自己的规则是正确的。一般而言,边长相等的图形面积并不相等(等周定理)。

相关

  • 同文馆京师同文馆,清末自强运动期间中国政府官办的外语人才学校,以教授西方语言为主的官办教育机构,也是中国近代最早成立的新式教育机构。京师同文馆成立于1862年8月24日,1900年停办,1
  • 屏风屏风是家具的一种,作用于间隔出一处特定的空间,有防止光及风直入室内。屏风适合用于更衣、沐浴、睡觉等私人活动。现时在酒楼、办公室等公众场所也常见,它有作为间板房用途,可暂
  • 英国行政区划政治主题英国的行政区划比较复杂,多层次,且不统一。英国作为一个主权国家,由英格兰、威尔士、苏格兰三个构成国和北爱尔兰组成。英格兰、威尔士、苏格兰、北爱尔兰每个部分皆有
  • 朱道本朱道本(1942年8月20日-),有机化学、中国物理化学家。生于上海,籍贯浙江杭州。1965年毕业于华东化工学院。1968年华东化工学院有机化学系研究生毕业。中国科学院化学研究所研究员
  • 白铅矿白铅矿是一种矿物名。晶体常呈假六方双堆状、板状及棒状,集合体为粒状或致密块状。产于铅锌硫化物矿床的氧化带,通常是有方铅矿氧化成铅矾,再由铅矾受碳酸溶液作用而成的表生矿
  • 卡斯人卡斯人(尼泊尔语:खस,转写:Khasa)是尼泊尔的印度教民族,分布于克什米尔至不丹之间,多数分布于北阿坎德邦、喜马偕尔邦、北方邦、阿萨姆邦、尼泊尔、西孟加拉邦北方、大吉岭,以及锡
  • 刚果王国刚果王国(1400年-1914年,刚果语:Wene wa Kongo)是位于非洲刚果河河口地区的古代部落联盟。在刚果王国的鼎盛时期,其疆域覆盖了西起大西洋海岸,东至宽果河,北起刚果河,南至宽扎河的广
  • 博蒙特博蒙特 (英文:Beaumont, Texas)是美国德克萨斯州东南部的一个城市,杰佛逊县县治。面积222.6平方公里,2006年人口为109,856人。1838年12月16日设市。城名是原来的地主约翰·米拉德
  • 比金河比金河是俄罗斯的河流,位于滨海边疆区和哈巴罗夫斯克边疆区,属于乌苏里江的右支流,河道全长560公里,流域面积22,300平方公里,河畔城镇有比金。
  • 银锭银锭指铸成锭状的银两(“锭”亦通“铤”,量词,本指未经冶炼铸造的金属块)。元朝以“元”为国号,库银逐称为元宝(取其元朝之宝之意。元初的“中统元宝”也有发行交钞及钱币),此后“元