数学构成主义

✍ dations ◷ 2025-10-08 06:11:01 #数学哲学

在数学哲学中,构成主义或构造主义认为要证明一个数学对象存在就必须把它构造出来。如果假设一个对象不存在,并从该假设推导出一个矛盾,对于构成主义者来说,不足以证明该对象存在。(构造性证明)

构成主义常常和直觉主义混淆,实际上,直觉主义只是构成主义的一种。直觉主义强调数学的基础建立在数学家们个人的直觉上,这样就把数学在本质上作为一种主观活动。构成主义不这样强调,并和对数学的客观看法保持一致。

构造主义者的数学使用构造性逻辑,该逻辑将真实性和证明等同起来。要构造性的证明 P Q {\displaystyle P\lor Q} ,我们必须证明 P {\displaystyle P} Q {\displaystyle Q} ,或两者同时成立。要构造式的证明 x X P ( x ) {\displaystyle \exists _{x\in X}P(x)} ,我们必须给出一个特定的 a X {\displaystyle a\in X} 和一个 P ( a ) {\displaystyle P(a)} 的证明。要构造式的证明 x X P ( x ) {\displaystyle \forall _{x\in X}P(x)} ,我们必须给出一个算法,它对于每个 a X {\displaystyle a\in X} 输出一个 P ( a ) {\displaystyle P(a)} 的证明。

构造主义同时拒绝采用无穷对象,例如无穷集合和序列。

在经典实分析中,实数构造的方法之一是把它作为有理数的柯西列对。这个构造在构造主义数学中不成立,因为序列是无穷的。

作为替换,我们把实数表示为一个算法 f {\displaystyle f} ,它取一个正整数 n {\displaystyle n} 然后输出一对有理数 ( f ( n ) , f r ( n ) ) {\displaystyle (f_{\ell }(n),f_{r}(n))} 使得

使得当 n {\displaystyle n} 增大,区间 {\displaystyle } 变小,而前 n {\displaystyle n} 个这种区间的交不空。我们使用 f {\displaystyle f} 来计算它所表示的实数的任何精度的有理数近似。

在这个定义下,实数 2 {\displaystyle {\sqrt {2}}} 可以用一个算法表示,它对于每个 0 i n {\displaystyle 0\leq i\leq n} 计算出最大的整数 a i {\displaystyle a_{i}} 使得 a i 2 2 i 2 {\displaystyle a_{i}^{2}\leq 2i^{2}} 然后输出 ( m a x { a i i } , m i n { a i + 1 i } ) {\displaystyle \left(\mathrm {max} \left\{{a_{i} \over i}\right\},\mathrm {min} \left\{{a_{i}+1 \over i}\right\}\right)}

这个定义和采用柯西列的经典定义相关,除了要求序列是构造式的:也就是说,我们有个计算第 n {\displaystyle n} 个序列中的元素的算法,所以有一个计算任意精确的对 2 {\displaystyle {\sqrt {2}}} 的有理数近似的算法。

注意构造性要求使得上述定义和通常非构造主义的实数定义不相容:因为每个算法 ξ {\displaystyle \xi } 必须是一个有限指令集 Σ {\displaystyle \Sigma } 上的有限序列,存在一个双射函数 f : Σ N {\displaystyle f:\Sigma ^{*}\rightarrow \mathbb {N} } 。所以所有算法的集合和所有自然数的集合有同样的基数。当使用一个非构造式的定义时,康托对角线论证证明实数比自然数有更高的基数。

传统上,数学家对于数学构造主义曾经持怀疑态度,如果不是完全反对的话,很大程度上这是因为它对构造分析的限制.

这些观点希尔伯特在1928年曾有强烈表示.他在《数学基础》(Die Grundlagen der Mathematik)写道:“把排中律从数学家那里拿走,就像把望远镜从天文学家那里拿走,或是从拳击手那里把拳头拿走一样”(排中律在构造性逻辑中不成立)。

Errett Bishop(英语:Errett Bishop),在他1967年的著作《构造性分析学基础》(Foundations of Constructive Analysis)中,作了很多驱散这种恐怖,他的办法是用构造性的框架中发展出传统的分析学的大部分.

但是,不是所有数学家都认为Bishop非常成功,因为的他的书必须比经典分析教科书更复杂.

无论如何,多数数学家不认为应该把自己限制到构造主义方式,甚至当可以这样做时。

相关

  • 血管性痴呆血管性痴呆(Vascular dementia),亦称多发梗塞性痴呆(multi-infarct dementia),是一系列由于血管性疾病引起的大脑梗塞,其中包括高血压性脑血管病、脑动脉硬化性痴呆。其梗塞过程往
  • 因纽特伊努克提图特语,或译作因纽特语、伊努特语、Eastern Canadian Inuktitut( (/ɪˈnʊktᵻtʊt/; Inuktitut: .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL",
  • 倭黑猩猩倭黑猩猩(学名:Pan paniscus),又名倭猩猩、僰猿、矮黑猩猩或巴诺布猿,是黑猩猩属下的两种动物之一,起先倭黑猩猩被认为和黑猩猩是同种生物,直到1920年代,才有人察觉两者的不同,而将之
  • MUC13黏液素(英语:Mucins,或简称黏素)是一类高分子量蛋白家族,且高度糖基化(属于糖缀合物(英语:glycoconjugate)),在大部分后生动物的上皮组织中都有表达。黏液素的特色是它可以构成胶状物;因
  • 三乘菩提三乘菩提,佛教术语,菩提(梵文:बोधि bodhi),是指“觉悟”的意思”,三乘是将佛教修行的法道的总体大纲分成三种:大乘佛菩提道、中乘缘觉菩提、小乘声闻菩提(缘觉菩提与声闻菩提合
  • 美少女死神 还我H之魂!《美少女死神 还我H之魂!》(日语:だから僕は、Hができない。),简称《我H》(僕H),是橘Pan执笔、桂井良明(日语:桂井よしあき)插画的压抑系情色喜剧轻小说。漫画版由冈雾硝(日语:岡霧硝)执笔
  • span class=nowrapHf(NOsub3/sub)sub4/sub/span硝酸铪是一种无机化合物,化学式为Hf(NO3)4,受热分解,产生二氧化铪。硝酸铪由四氯化铪和五氧化二氮反应得到。
  • 1968年马丁·路德·金遇刺案阴谋论马丁·路德·金遇刺案(英文:Assassination of Martin Luther King, Jr.)是指1968年4月4日,美国民权运动领袖马丁·路德·金在美国田纳西州孟菲斯旅馆内遭枪击亡故。嫌犯詹姆斯·
  • 原子量原子量(atomic mass),也称原子质量或相对原子质量,符号a或r,是指单一原子的质量,其单位为原子质量单位(符号u或Da,以往曾用amu) ,定义为一个碳12原子静止质量的
  • 胆 (脏腑)据中医脏象学说,胆与、胃、小肠、大肠、膀胱、三焦合称“六腑”;与“肝”互为表里。主要功能为贮藏和排泄精汁(胆汁)、主决断和调节脏腑气机。胆与其他腑器不同之处,是不会和食物