分裂四元数

✍ dations ◷ 2025-10-12 07:30:58 #狭义相对论,双曲几何,四元数

在抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle(英语:James Cockle)在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四维的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子、幂零元和幂等元(英语:Idempotent_(ring_theory))。(例如, 1 2 ( 1 + j ) {\displaystyle {1 \over 2}(1+j)} 是其范数。 任何满足 q 0 {\displaystyle q\neq 0} 有倒数,即 q N ( q ) {\displaystyle q^{*} \over N(q)} 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式是

减号的出现将反四元数与使用了加号的四元数 H {\displaystyle \mathbb {H} } 和是双曲复数,分裂四元数 q = ( a , b ) = ( ( w + z j ) , ( y + x j ) ) {\displaystyle q=(a,b)=((w+zj),(y+xj))} ∗ is positive definite on the planes and . Consider the counter-sphere {: ∗ = −1}.

Take = + i + where = j cos() + k sin(). Fix and suppose

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane ⊂ P, can be written, for some ∈

Let φ be the angle between the hyperbolas from to and . This angle can be viewed, in the plane tangent to the counter-sphere at , by projection:

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter determining the meridian varies over the 1. Thus the counter-sphere appears as the manifold 1 × H2.

By using the foundations given above, one can show that the mapping

is an ordinary or hyperbolic rotation according as

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if ∗ = −1, then there is a = i sinh() + cosh() ∈ such that ∈ , and a ∈ such that = exp(). Then if = exp(), = i cosh() + sinh(), and = i, the set {, , , } is a pan-orthogonal basis stemming from , and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

The coquaternions were initially introduced (under that name) in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an when he was speaking at the International Congress of Mathematicians in Paris in 1900.

The unit sphere was considered in 1910 by Hans Beck. For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the .

相关

  • 卡塔尼亚卡塔尼亚(意大利语:Catania)是意大利南部西西里的第二大城市,也是卡塔尼亚省的首府。卡塔尼亚位于西西里岛的东岸,墨西拿和锡拉库萨的半途、埃特纳火山的山脚。卡塔尼亚有306,000
  • 国际卫生条例《国际卫生条例》(法语:Règlement Sanitaire International, 缩写RSI;英语:International Health Regulations , 缩写IHR)是一个控制传染病在全球蔓延的国际条约,目前由世界卫生
  • 刷牙刷牙是清洁牙齿的行为。刷牙能清除牙齿表面的牙菌膜,我们该在每天早上起床及晚上睡前刷牙,彻底清除牙菌膜以预防牙周病。包括牙刷、牙线、牙间刷等。以牙膏及牙粉为主。刷牙的
  • 维特《维特》(Werther)是法国作曲家马斯内的歌剧,完成于1892年,脚本由爱杜亚·布劳(Edouard Blau)、保罗·米利耶(Paul Milliet)以及乔治·哈特曼(Georges Hartmann)根据歌德的小说改编而
  • 基督教科学会基督科学教会(Christian Science),亦译为基督教科学会、基督教科学派,1879年由玛丽·贝克·艾迪创立,总教堂(或称母教堂)位于美国马萨诸塞州波士顿。此教派的教义主要来自她所著的
  • 史进久在华州城外住 旧时原是庄农 学成武艺惯心胸 三尖刀似雪 浑赤马如龙 体挂连环铁铠 战袍风披猩红 雕青镌玉更玲珑 江湖称史进 绰号九纹龙史进,小说水浒传中人物。史进是前东
  • 中部高速公路 */?)是一条纵贯韩国中部的高速公路,全长117.2公里。1987年12月3日通车。2001年8月24日起同统营-大田高速公路共用编号。
  • 丹尼·博伊尔丹尼·博伊尔(英语:Danny Boyle,1956年10月20日-)是一位生于英国曼彻斯特的电影导演与电影制作人,曾获得奥斯卡金像奖。他以执导《迷幻列车》、《惊变28天》和《太阳浩劫》等电影
  • 比亚迪秦比亚迪秦是由比亚迪汽车所生产制造的一款新能源汽车。最初版本为插电式混合动力汽车,充饱电力可行驶70公里,后推出纯电动版本。首次亮相于2012北京国际汽车展览会,以概念车形式
  • 桐嶋莉乃桐嶋莉乃(日语:桐嶋りの,1990年9月9日-),日本的AV女优,德岛县出身。曾是“PRESTIGE”专属女优,所属于“T-POWERS”事务所。兴趣是旅游,擅长车辆维修跟煮食。因为本来就对AV女优有兴趣