哈尔小波

✍ dations ◷ 2025-10-09 16:07:37 #小波分析

哈尔小波转换是小波转换(Wavelet transform)中最简单的一种转换,也是最早提出的小波转换。
其对应的缩放方程式(scaling function)可表示为:

其滤波器(filter)h被定义为
h = : { 1 2 if n = 0,1 0 otherwise {\displaystyle {\begin{cases}{\frac {1}{\sqrt {2}}}&{\mbox{if n = 0,1}}\\0&{\mbox{otherwise}}\end{cases}}}
当 n = 0 与 n = 1 时,有两个非零系数,因此,我们可以将它写成

哈尔小波的母小波(mother wavelet)可表示为:

在所有正交性(orthonormal)小波转换中哈尔小波转换(Haar wavelet)是最简单的一种转换,但它并不适合用于较为平滑的函数,因为它只有一个消失矩(Vanishing Moment)。




由图示可知:

(1):

ψ ( t ) ψ ( 2 t ) d t = 0 {\displaystyle \Rightarrow \int \psi (t)\psi (2t)\,dt=0}

(2):

ψ ( t ) ψ ( t 1 ) d t = 0 {\displaystyle \Rightarrow \int \psi (t)\psi (t-1)\,dt=0}

scaling function




哈尔小波具有如下的特性:

(1)任何 function 都可以由 ϕ ( t ) , ϕ ( 2 t ) , ϕ ( 4 t ) , , ϕ ( 2 k t ) {\displaystyle \phi (t),\phi (2t),\phi (4t),\dots ,\phi (2^{k}t)} 以及它们的位移所组成。

(2)任何平均为 0 的function 都可以由 ψ ( t ) , ψ ( 2 t ) , ψ ( 4 t ) , , ψ ( 2 k t ) {\displaystyle \psi (t),\psi (2t),\psi (4t),\dots ,\psi (2^{k}t)} 所组成,也就是,任何 function 都可以由 常数, ψ ( t ) , ψ ( 2 t ) , ψ ( 4 t ) , , ψ ( 2 k t ) {\displaystyle \psi (t),\psi (2t),\psi (4t),\dots ,\psi (2^{k}t)} 所组成。

(3)正交性(Orthogonal) 2 m ψ ( 2 m 1 t n 1 ) ψ ( 2 m t n ) d t = δ ( m , m 1 ) δ ( n , n 1 ) {\displaystyle \int _{-\infty }^{\infty }2^{m}\psi (2^{m_{1}}t-n_{1})\psi (2^{m}t-n)\,dt=\delta (m,m_{1})\delta (n,n_{1})}

(4)不同宽度的(也就是不同 m) 的wavelet/scaling functions之间会有一个关系

                     ϕ        (        t        )        =        ϕ        (        2        t        )        +        ϕ        (        2        t                1        )              {\displaystyle \phi (t)=\phi (2t)+\phi (2t-1)}  

ϕ ( t n ) = ϕ ( 2 t 2 n ) + ϕ ( 2 t 2 n 1 ) {\displaystyle \phi (t-n)=\phi (2t-2n)+\phi (2t-2n-1)} ϕ ( 2 m t n ) = ϕ ( 2 m + 1 t 2 n ) + ϕ ( 2 m + 1 t 2 n 1 ) {\displaystyle \phi (2^{m}t-n)=\phi (2^{m+1}t-2n)+\phi (2^{m+1}t-2n-1)}

                     ψ        (        t        )        =        ϕ        (        2        t        )                ϕ        (        2        t                1        )              {\displaystyle \psi (t)=\phi (2t)-\phi (2t-1)}  

ψ ( t n ) = ϕ ( 2 t n ) ϕ ( 2 t 2 n 1 ) {\displaystyle \psi (t-n)=\phi (2t-n)-\phi (2t-2n-1)} ψ ( 2 m t n ) = ϕ ( 2 m + 1 t n ) ϕ ( 2 m + 1 t 2 n 1 ) {\displaystyle \psi (2^{m}t-n)=\phi (2^{m+1}t-n)-\phi (2^{m+1}t-2n-1)}

(5)可以用 m+1的 系数来计算 m 的系数

χ w ( n , m ) = 2 m / 2 x ( t ) ϕ ( 2 m t n ) d t {\displaystyle \chi _{w}(n,m)=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m}t-n)\,dt}

χ w ( n , m ) = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n ) d t + = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n 1 ) d t = 1 2 ( χ w ( 2 n , m + 1 ) + χ w ( 2 n + 1 , m + 1 ) ) {\displaystyle {\begin{aligned}\chi _{w}(n,m)&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n)\,dt+\\&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n-1)\,dt\\&={\sqrt {\frac {1}{2}}}(\chi _{w}(2n,m+1)+\chi _{w}(2n+1,m+1))\\\end{aligned}}}

X w ( n , m ) = 2 m / 2 x ( t ) ψ ( 2 m t n ) d t {\displaystyle \mathrm {X} _{w}(n,m)=2^{m/2}\int _{-\infty }^{\infty }x(t)\psi (2^{m}t-n)\,dt}

X w ( n , m ) = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n ) d t = 2 m / 2 x ( t ) ϕ ( 2 m + 1 t 2 n 1 ) d t = X w ( n , m ) = 1 2 ( χ w ( 2 n , m + 1 ) χ w ( 2 n + 1 , m + 1 ) ) {\displaystyle {\begin{aligned}\mathrm {X} _{w}(n,m)&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n)\,dt-\\&=2^{m/2}\int _{-\infty }^{\infty }x(t)\phi (2^{m+1}t-2n-1)\,dt\\&=\mathrm {X} _{w}(n,m)={\sqrt {\frac {1}{2}}}(\chi _{w}(2n,m+1)-\chi _{w}(2n+1,m+1))\\\end{aligned}}}

图示如下:

为多重解析结构(multiresolution analysis )

相关

  • RNA → RNA结构 / ECOD结构 / ECODRNA复制酶(RNA replicase),或名RNA依赖性RNA聚合酶(RNA-dependent RNA polymerase 缩写RdRp或RDR),系一类能以RNA为模板复制RNA的酶。值得注意的是,这类酶和
  • 资产会计学上的资产(英文:Asset),指一企业透过交易或非交易事项所获得之经济资源,能以货币衡量,并预期未来能提供效益者。资产,就是能够为个人或企业带来收益的东西。在财务会计中,资产
  • 布特罗斯·加利布特罗斯·布特罗斯-加利(阿拉伯语:بطرس بطرس غالي‎,拉丁化:Buṭrus Buṭrus-Gālī,1922年11月14日-2016年2月16日),联合国第六任秘书长(1992年1月—1996年12月)。布特
  • Kahle, Brewster布鲁斯特·卡利(Brewster Kahle /ˈkeɪl/ KAYL-'; 1960年-) 是一位美国数字图书馆员、电脑工程师和资讯科技企业家,是Alexa Internet和互联网档案馆的创始人。 2012年入选互联网
  • 蜥脚形亚目蜥脚形亚目(学名:Sauropodomorpha,或译作蜥脚亚目)意为“蜥蜴般的脚”与“形态”,是蜥臀目的一个演化支,包含蜥脚下目、与其祖先近亲(原蜥脚下目,可能是并系群)。蜥脚下目是一群长颈
  • 河漫滩平原河漫滩,又称泛滥平原或洪泛平原,通常位于河流中下游,指由于河流堆积作用而形成的大片堆积体,是河流堆积地貌的一种。常在在枯水季节露出水面,在丰水季节又常被淹没。河漫滩一旦形
  • 体育中心南开大学体育中心,即南开大学新体育馆,位于中华人民共和国天津市,始建于2005年1月,于2006年10月竣工及投用,占地约30,000平米,建筑面积24,600平米,总投资1.5亿元,落成时是教育部直属
  • 天文学者天文学家是研究天文学、宇宙学、天体物理学等相关学科的科学家。因为有些哲学家、物理学家、数学家对天文理论有着不可忽视的影响,所以下面的列表中也包括这些人。当代的天文
  • 维氏硬度试验维氏硬度试验(英语:Vickers hardness test),是压入硬度试验之一种,其测量值用HV表示。维氏硬度试验最初于20世纪20年代初被提出,比起其他硬度试验其优点有:硬度值与压头大小、负荷
  • 大西洋奴隶贸易大西洋奴隶贸易,或称为跨大西洋奴隶贸易。是指16世纪至19世纪时期(也有人认为早至15世纪,并持续至20世纪),在环大西洋地区将非洲大陆人民作为廉价劳动力提供给美洲大陆殖民地地区