作用量-角度坐标

✍ dations ◷ 2025-07-05 18:27:39 #经典力学,哈密顿力学,坐标系

在经典力学里,作用量-角度坐标(action-angle coordinate)是一组正则坐标,通常在解析可积分系统 (Integrable system) 时,有很大的用处。应用作用量-角度坐标的方法,不需要先解析运动方程,就能够求得振动或旋转的频率。作用量-角度坐标主要用于完全可分的 哈密顿-亚可比方程(哈密顿量显性地不含时间,也就是说,能量保持恒定)。作用量-角度变数可以用来定义一个环面不变量。因为,保持作用量的不变设定了环的曲面,而角度是环面的另外一个坐标,粒子依照着角度,卷绕于环面。

在量子力学早期,波动力学发展成功之前,玻尔-索末菲量子化条件 (Bohr-Sommerfeld quantization) 是研究量子力学的利器。此条件阐明,作用量必须是普朗克常数常数的整数倍。爱因斯坦对于 Einstein-Brillouin-Keller action quantization 深刻的理解 与 非可积分系统 量子化的困难,都是以 作用量-角度坐标的环面不变量 来表达。

在哈密顿力学里,作用量-角度坐标也可以应用于摄动理论,特别是在决定缓渐不变量。关于一个自由度很小的动力系统的非线形摄动,混沌理论研究的最早的一个结果是 KAM theorem 。这定理阐明,对于微小摄动,环面不变量是稳定的。

作用量-角度坐标,对于户田晶格 (Toda field theory) 的解析,对于 Lax pairs 的定义,更广义地,对于一个系统同光谱 (isospectral) 演化的构想,都占有关键地位。

假设,在一个物理系统里,哈密顿量是保守的,也就是说,哈密顿量 H {\displaystyle {\mathcal {H}}} 不显含时间;

其中, a H {\displaystyle a_{\mathcal {H}}} 是运动常数, q {\displaystyle \mathbf {q} } 是广义坐标, p {\displaystyle \mathbf {p} } 是广义动量。

采用哈密顿特征函数 W ( q ;   P ) {\displaystyle W(\mathbf {q} ;\ \mathbf {P} )} 为正则变换的第二型生成函数。变换方程为

其中, Q {\displaystyle \mathbf {Q} } 是新广义坐标, P {\displaystyle \mathbf {P} } 是新广义动量。

新哈密顿量 K {\displaystyle {\mathcal {K}}} 与旧哈密顿量 H {\displaystyle {\mathcal {H}}} 相等:

新广义动量的哈密顿方程为

所以,新广义动量是常数 a {\displaystyle \mathbf {a} }

假设,这物理系统的哈密顿-亚可比方程 H ( q ,   W q ) = a H {\displaystyle {\mathcal {H}}\left(\mathbf {q} ,\ {\frac {\partial W}{\partial \mathbf {q} }}\right)=a_{\mathcal {H}}} 为完全可分的,则哈密顿特征函数 W ( q ;   P ) {\displaystyle W(\mathbf {q} ;\ \mathbf {P} )} 可以分离为 n {\displaystyle n} 个函数 W i {\displaystyle W_{i}}

哈密顿特征函数与新旧正则坐标的关系是

假若,粒子的运动是周期性运动,最常见的例子如振动或旋转都是周期性运动,则可以设计一个新正则坐标-作用量-角度坐标 ( w ,   J ) {\displaystyle (\mathbf {w} ,\ \mathbf {J} )} 。定义作用量为

这闭路径积分的路径是粒子运动一周期的路径。

由于广义动量 p i {\displaystyle p_{i}} 只跟 q i {\displaystyle q_{i}} a {\displaystyle \mathbf {a} } 有关,经过积分,作用量 J i {\displaystyle J_{i}} 只跟 a {\displaystyle \mathbf {a} } 有关。所以,作用量矢量 J {\displaystyle \mathbf {J} } 只是个常数矢量。哈密顿特征函数可以表达为

虽然是同样的物理量,函数的参数不同,形式也不同。

定义角度 w {\displaystyle \mathbf {w} }

由于所有的广义坐标 q i {\displaystyle q_{i}} 都相互独立,所有的广义动量 p i {\displaystyle p_{i}} 也都相互独立,所以,所有的作用量 J i {\displaystyle J_{i}} 都相互独立,作用量-角度坐标可以正确的用为正则坐标。这样,哈密顿特征函数可以用正则坐标作用量-角度坐标表达为

新哈密顿量 K {\displaystyle {\mathcal {K}}'} 与旧哈密顿量 H {\displaystyle {\mathcal {H}}} 相等:

因为作用量 J i = J i ( a ) {\displaystyle J_{i}=J_{i}(\mathbf {a} )} 只是常数矢量,所以,

新哈密顿量 K = K ( J ) {\displaystyle {\mathcal {K}}'={\mathcal {K}}'(\mathbf {J} )} ,只跟作用量 J {\displaystyle \mathbf {J} } 有关,跟角度 w {\displaystyle \mathbf {w} } 无关。

角度 w i {\displaystyle w_{i}} 随时间的导数 ν i {\displaystyle \nu _{i}} ,可以用哈密顿方程决定:

每一个 J i {\displaystyle J_{i}} 都是常数,所以, ν i ( J ) {\displaystyle \nu _{i}(\mathbf {J} )} 也是常数:

其中, β i {\displaystyle \beta _{i}} 是积分常数。

假设原本广义坐标 q i {\displaystyle q_{i}} 的振荡或旋转的运动周期为 T i {\displaystyle T_{i}} ,则其对应的角度变数 w i {\displaystyle w_{i}} 的改变是 Δ w i = ν i T i {\displaystyle \Delta w_{i}=\nu _{i}T_{i}} 。进一步了解物理量 ν i {\displaystyle \nu _{i}} 的性质,猜想 ν i {\displaystyle \nu _{i}} 与广义坐标 q i {\displaystyle q_{i}} 周期性运动的频率有关。可是,因为角度 w i {\displaystyle w_{i}} 是广义坐标 q {\displaystyle \mathbf {q} } 与作用量 J {\displaystyle \mathbf {J} } 的函数,无法确定前面的猜想。为了证实这论点,计算周期 T i {\displaystyle T_{i}}

新哈密顿量 K ( J ) {\displaystyle {\mathcal {K}}'(\mathbf {J} )} 与旧哈密顿量 H {\displaystyle {\mathcal {H}}} 相等。所以,

假若 q j {\displaystyle q_{j}} 是个循环坐标,那么,其共轭动量 p j {\displaystyle p_{j}} 必是个常数,可以从作用量的定义积分内提出来:

其中, {\displaystyle \ell } q j {\displaystyle q_{j}} 运动一周期的值。

这样,

代入周期 T i {\displaystyle T_{i}} 的公式,

肯定地, ν i {\displaystyle \nu _{i}} 是广义坐标 q i {\displaystyle q_{i}} 的频率。

假若 q j {\displaystyle q_{j}} 不是循环坐标,则不能将其共轭动量 p j {\displaystyle p_{j}} 从作用量的定义积分内提出来,必须采用另外一个方法计算。从角度的定义,可以察觉角度 w i {\displaystyle w_{i}} 跟广义坐标 q {\displaystyle \mathbf {q} } 、作用量 J {\displaystyle \mathbf {J} } 有关:

保持作用量不变,角度的虚位移 δ w i {\displaystyle \delta w_{i}} 是:

在一个周期性物理系统里,每一个广义坐标 q i {\displaystyle q_{i}} 都有它运动的周期 T i {\displaystyle T_{i}} 。假若,其中有任何广义坐标的周期与别的广义坐标的周期不相同,则称此物理系统为多重周期性物理系统。假若,两个广义坐标的周期不同 T 1 {\displaystyle T_{1}} T 2 {\displaystyle T_{2}} 。在做闭路径积分的时候,就必须使用使用一个新的周期 T {\displaystyle T} ,让闭路径积分能够开始与结束于同一点.假若,两个周期的比例是个有理数,则称这两个周期互相可通约的。设定新周期为

其中, T T 1 {\displaystyle {\frac {T}{T_{1}}}} T T 2 {\displaystyle {\frac {T}{T_{2}}}} m 1 {\displaystyle m_{1}} m 2 {\displaystyle m_{2}} ,都是正值的整数。

同样地,在多重周期性物理系统里,假若,每一个广义坐标的周期与其它的广义坐标的周期都是互相可通约的,则此系统是完全可通约的,称此系统为完全可通约系统。那么,新周期 T {\displaystyle T}

其中, T T i {\displaystyle {\frac {T}{T_{i}}}} m i {\displaystyle m_{i}} ,都是正值的整数。

经过一个周期 T {\displaystyle T} ,角度 w i {\displaystyle w_{i}} 的变化是:

由于作用量 J i {\displaystyle J_{i}} 是个常数,可以将它从积分内提出:

所以,频率是

假若,有任何两个互相不可通约的广义坐标 q i {\displaystyle q_{i}} q j {\displaystyle q_{j}} ,其周期 T i {\displaystyle T_{i}} T j {\displaystyle T_{j}} 的比例是无理数。那么, q i {\displaystyle q_{i}} 不可能与 q j {\displaystyle q_{j}}

相关

  • 垃圾信件垃圾电邮(英语:email spam)是滥发电子消息中最常见的一种,指的就是“不请自来,未经用户许可就塞入信箱的电子邮件”。垃圾电邮的主要特性包括:垃圾电邮的防制:“SPAM”最初是一个罐
  • 睡眠脚动症不宁腿綜合症(英语:Restless legs syndrome, RLS),又称睡眠腿动症、不安腿综合征、腿不宁綜合症、Willis-Ekbom病或Wittmaack-Ekbom綜合症是一种强烈想要让腿部移动的障碍。平常
  • 碘化银碘化银(AgI)为碘和银的化合物,黄色粉末(~558 °C分解),见光分解,并大量吸热,先变灰后变黑,不溶于水和氨水,用于照相术和人工降雨的晶核。
  • 查嗣庭试题案查嗣庭(17世纪-1727年),字润木,号横浦,浙江海宁袁花人。查嗣庭为查慎行之弟,康熙四十五年(1706年)中进士,选庶吉士,散馆授翰林院编修。雍正元年,由隆科多荐举,授内阁学士,又受蔡珽荐举,兼礼
  • 伯根地色勃艮第酒红(英语:burgundy;法语:bourgogne)是红色系的一种颜色,因与法国勃艮第所出产的勃艮第酒颜色相似而得名。勃艮第酒红与栗色相似。勃艮第色是多个国家护照所采用的封皮颜色,
  • 游寿游寿(1906年-1994年2月16日),字介眉,别名戒微,福建霞浦人,中国女书法家、古文字学家、考古学家、诗人,近代学者型书家的代表人物之一。曾任黑龙江省政协委员、中国书法家协会理事、
  • 谢成谢成(?-1394年),濠州(安徽凤阳)人,明朝初年军事将领,永平侯。其早年跟随朱元璋攻陷滁州、和州、集庆、宁国、婺州、武昌,晋升指挥佥事。后跟随大军征讨中原,并攻陷元大都、庆阳、定西,为
  • 圣洛伦索峰圣洛伦索峰是南美洲的山峰,位于智利和阿根廷接壤的边境,属于安第斯山脉的一部分,海拔高度3,706米,人类在1943年首次成功登顶。
  • 刘荣 (明朝将领)刘荣(1360年-1420年),河南江北等处行中书省归德府邳州宿迁县(今江苏省宿迁县)人,明朝军事将领。广宁伯。刘荣早年冒父名“刘江”,跟从魏国公徐达征战灰山、黑松林,后担任总旗,给事燕邸
  • 曺五燮曺五燮(朝鲜语:조오섭/曺五燮 ,1968年7月19日-),大韩民国自由派政治人物,第21届国会议员。