自同构

✍ dations ◷ 2025-06-08 07:47:31 #态射,抽象代数,对称

数学上,自同构是从一个数学对象(英语:mathematical object)到自身的同构,可以看为这对象的一个对称,将这对象映射到自身而保持其全部结构的一个途径。一个对象的所有自同构的集合是一个群,称为自同构群,大致而言,是这对象的对称群。

自同构的精确定义,依赖于“数学对象”的种类,及这对象的“同构”的准确界定。可以定义这些概念的最一般情形,是在数学的一个抽象分支,称为范畴论。范畴论是研究抽象对象和这些对象间的态射。

在范畴论中,自同构是一个自同态(即是一个对象到自身的一个态射)而同时为(范畴论所定义的)同构。

这是一个很抽象的定义,因为范畴论中,态射不一定是函数,对象不一定是集合。不过在更具象的情形中,对象会是有附加结构的集合,而态射会是保持这种结构的函数。

例如在抽象代数中,一个数学对象是代数结构,如群、环、向量空间等。一个同构就是双射的同态(同态按代数结构而定, 例如群同态、环同态、线性算子)。

恒等态射(恒等映射)在某些情况称为平凡自同构。相对地,其他(非恒等)自同构称为非平凡自同构。

如果一个对象的自同构组成一集合(而不是一个真类)那么这些自同构以态射复合运算组成一个群。这个群称为的自同构群。可以直接检查这的确是一个群:

在一个范畴中的一个对象的自同构群,记为Aut(),如果内文明显看出该范畴,可简记为Aut()。

群自同构的一个最早期的例子,是爱尔兰数学家威廉·哈密顿在1856年给出。在他的Icosian calculus(英语:Icosian calculus)中,他发现了一个2阶的自同构,写道:

使得 μ {\displaystyle \mu } 的每个元素,以共轭是一个运算 : → ,定义为() = −1(或−1;用法各异)。易知以共轭是一个群自同构。内自同构组成 Aut()的一个正规子群,记作Inn()。

其他的自同构称为外自同构。商群Aut() / Inn()通常记为Out();非平凡元素是包含外自同构的陪集。

在任何有幺元的环或代数中的可逆元,可以同样定义内自同构。对于李代数,定义有少许不同。

相关

  • MycoBankMycoBank是一个线上数据库,记录着各种真菌的学名与形态描述。其是由荷兰乌特勒支的皇家科学院真菌生物多样性研究中心负责营运管理。每种被描述的新种真菌,在经由命名专家检视
  • 基因体基因组(genome)在生物学中,是指一个生物体所包含的DNA(部分病毒是RNA)里的全部遗传信息,又称基因体。基因组包括基因和非编码DNA。1920年,德国汉堡大学植物学教授汉斯·温克勒(Hans
  • dsDNA脱氧核糖核酸病毒(英语:DNA virus),又称DNA病毒,其遗传物质为DNA。一般为正链DNA病毒。医学导航: 病毒病病毒(蛋白质)/分类cutn/syst (hppv/艾滋病, 流感/疱疹/人畜共患)/人名体
  • 体能锻炼体能锻炼,又称体能训练、体适能训练,泛指所有通过运动方式,来达到维持与发展适当体能、增进身体健康的身体活动。它的目标有许多种,包括:增强肌肉与循环系统、增进运动技能与身体
  • 蒸气压第一:375.7 kJ·mol−1 第二:2234.3 kJ·mol−1 第三:3400 kJ·mol主条目:铯的同位素铯(Cesium,旧译作鏭)是一种化学元素,化学符号为Cs,原子序为55。铯属于碱金属,带银金色
  • 钙调素钙调蛋白(英语:Calmodulin,简称CaM),是一种能与钙离子结合的蛋白质,普遍存在真核生物细胞中。钙调蛋白是一种多功能中介钙结合蛋白。它是第二信使
  • 埃胡德·奥尔默特埃胡德·奥尔默特(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova"
  • 天主教马尼拉总教区天主教马尼拉总教区(拉丁语:Archidioecesis Manilensis;他加禄语:Arkidiyosesis ng Maynila)是罗马天主教会以菲律宾首都马尼拉为中心的一个总教区。其总主教也是菲国的首席主教,
  • 乔治·卡夫坦乔治·A·卡夫坦(英语:George A. Kaftan,1928年2月22日-2018年10月6日),美国NBA联盟职业篮球运动员。
  • 于鬯于鬯(约1862年-1919年),字醴尊,一字东厢,自号香草。江苏南汇(今上海南汇)人。清朝末年学者,在经学、先秦诸子、历史学、楚辞等方面颇有研究。14岁时,他进入县学读书。光绪十二年(1886