同态滤波

✍ dations ◷ 2025-10-26 15:40:40 #信号处理

同态滤波是一种广泛用于信号和图像处理的技术,将原本的信号经由非线性映射,转换到可以使用线性滤波器的不同域,做完运算后再映射回原始域。同态的性质就是保持相关的属性不变,而同态滤波的好处是将原本复杂的运算转为效能相同但相对简单的运算。这个概念在1960年代由Thomas Stockham,Alan V. Oppenheim和Ronald W. Schafer在麻省理工学院提出。

同态滤波利用去除乘性噪声(multiplicative noise),可以同时增加对比度以及标准化亮度,借此达到图像增强的目的。

一副图像可以表示为其照度(illumination)分量和反射(reflectance)分量的乘积,虽然在时域上这两者是不可分离的,但是经由傅立叶转换两者在频域中可以线性分离。由于照度可视为环境中的照明,相对变化很小,可以看作是图像的低频成分;而反射率相对变化较大,则可视为高频成分。通过分别处理照度和反射率对像元灰度值的影响,通常是借由高通滤波器(high-pass filter),让图像的照明更加均匀,达到增强阴影区细节特征的目的。

对于一副图像,可表示为照射分量和反射分量的乘积,即

m ( x , y ) = i ( x , y ) r ( x , y ) {\displaystyle m(x,y)=i(x,y)\cdot {r(x,y)}}

其中,m为图像,i为照度分量,r为反射分量。

为了在频域中使用高通滤波器,我们必须进行傅立叶转换,但由于上式是一个乘积式,不能直接对照度和反射的频率分量进行操作,因此对上式取对数

ln { m ( x , y ) } = ln { i ( x , y ) } + ln { r ( x , y ) } {\displaystyle \ln\{{m(x,y)}\}=\ln\{{i(x,y)}\}+\ln\{{r(x,y)}\}}

然后再对上式两边做傅立叶转换,

F { ln { f ( x , y ) } } = F { ln { i ( x , y ) } } + F { ln { r ( x , y ) } } {\displaystyle {\mathcal {F}}\{\ln\{{f(x,y)}\}\}={\mathcal {F}}\{\ln\{{i(x,y)}\}\}+{\mathcal {F}}\{\ln\{{r(x,y)}\}\}}

并将 F { ln { f ( x , y ) } } {\displaystyle {\mathcal {F}}\{\ln\{{f(x,y)}\}\}} 定义为 M ( u , v ) {\displaystyle M(u,v)}

接下来对图像进行高通滤波,如此可以使图像的照明更均匀,高频分量增加且低频分量减少

N ( u , v ) = H ( u , v ) M ( u , v ) {\displaystyle N(u,v)=H(u,v)\cdot {M(u,v)}}

其中,N是频域中滤波后的图像,H是高通滤波器。

为了将图像从频域转回时域,我们对N做傅立叶逆转换

n ( x , y ) = F 1 { N ( u , v ) } {\displaystyle n(x,y)={\mathcal {F^{-1}}}\{N(u,v)\}}

最后,对n使用指数函数(exponential)来复原我们一开始取的自然对数

m ( x , y ) = exp { n ( x , y ) } {\displaystyle m'(x,y)=\exp\{n(x,y)\}}

其中m'为做完同态滤波的新图像。

在对数谱域中使用同态滤波来将滤波效应(filter effect)与激励效应(excitation effect)分开,例如在表示声音的倒频谱(cepstrum)计算中, 对数谱域中的增强可以提高声音清晰度,可以应于于助听器。

同态滤波用于消除源自sEMG信号的随机脉冲串的影响。通过这种方式,只保留有关运动单元动作电位(MUAP)形状和振幅的信息,如此用于估计MUAP本身的时域模型参数。

相关

  • 格拉尼特拉格纳·亚瑟·格拉尼特(瑞典语:Ragnar Arthur Granit,1900年10月30日-1991年3月12日)是一位芬兰及瑞典科学家,于1967年与乔治·沃尔德及霍尔登·凯弗·哈特兰共同获得诺贝尔生理
  • 坎昆宣言坎昆宣言(Cancun Declaration)是2016年12月3日在墨西哥坎昆发表的宣言,是在12月2、3日由联合国生物多样性大会举行《生物多样性公约》缔约方第13次会议(COP13),由各国部长通过在农
  • 过氧酰基硝酸酯过氧酰基硝酸酯(Peroxyacetyl Nitrates;PANs 或 Acyl peroxy nitrates;APNs),是洛杉矶型烟雾(光化学烟雾)中的主要二次污染成分之一。它不是由人类活动或是自然活动所产生的直接排
  • 石毛宏典石毛宏典(1956年9月22日-)为日本的棒球选手、教练,出生于千叶县旭市。他曾效力于日本职棒福冈大荣鹰、埼玉西武狮等,1996年退休,生涯通算236支本垒打。50 别当薰 | 51 南村不可止
  • about.meabout.me是一个个人名片服务,由Ryan Freitas, Tony Conrad和Tim Young在2009年10月共同创办。该网站给注册用户提供一个简单的平台连接多个流行的社交网站和相关的外部网站,如G
  • 亚伯特·费雪汉密尔顿·霍华德·“亚伯特”·费雪(英文原名:Hamilton Howard "Albert" Fish,1870年5月19日-1936年1月16日),绰号为“发狂的月光杀手”(Moon Maniac)、“威斯特里亚狼人”(Werewolf
  • 追凶者也《追凶者也》(英语:Cock and Bull),是曹保平执导的一部中国剧情片,张天辉、阳建军和曹保平联合编剧,刘烨、张译、王子文、段博文、谭卓、颜北主演。2016年9月14日在中国上映。刘烨
  • 柴油朋克柴油朋克(英语:Dieselpunk)是一种类似蒸汽朋克的幻想题材,结合了战间期至20世纪50年代的柴油机技术、复古未来主义技术和后现代主义。柴油朋克也衍生出相关的电影、音乐、视觉艺
  • 埃格·阿尔维克埃格·阿尔维克(英语:Egil Aarvik,1912年12月12日-1990年7月19日),挪威作家、政治家,基督教民主党,是挪威诺贝尔委员会主席。
  • 甘龙甘龙(?-?),战国时期人物,秦国大夫。前359年,卫鞅想实行变法改革,秦国的贵族都不赞同。卫鞅认为圣人只要能够强国,就不必拘泥于旧传统。甘龙反驳说:“不对,按照旧章来治理,才能使官员熟悉